Skip to main content
Log in

Wide-frequency band measurement and analysis of electrochemical noise of Li/MnO2 primary battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical noise of a commercially produced Li/MnO2 primary battery was measured during discharge via a constant value resistor. Power spectral density frequency dependences were calculated for different state of charge values across the frequency band from 0.02 to 5 kHz. It was shown that they possess close to linear frequency dependences. For high state of charge values, an intersection with the thermal noise spectrum was observed in a high-frequency band. The electrochemical impedance of the investigated type of battery was measured at different charge values both during discharge and following a relaxation pause. Impedance spectra obtained under load conditions were used to model the electrochemical noise spectra. It was shown that impedance parameters can be used to describe the electrochemical noise spectra in the frequency band above 500 Hz at state of charge values higher than 50%. Dependencies of electrochemical noise amplitude on discharge current value were investigated at different states of charge. It was shown that power spectral density has a linear dependency on discharge current at a power of about 2 for a charged battery and 2.5 for a discharged battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mingant R, Bernard J, Sauvant-Moynot V (2016) Novel state-of-health diagnostic method for Li-ion battery in service. Appl Energy 183:390–398

    Article  CAS  Google Scholar 

  2. Birkl CR, Roberts MR, McTurk E, Bruce PG, Howey DA (2017) Degradation diagnostics for lithium ion cells. J Power Sources 341:373–386

    Article  CAS  Google Scholar 

  3. Farmann A, Waag W, Sauer DU (2015) Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles. J Power Sources 299:176–188

    Article  CAS  Google Scholar 

  4. Tant S, Rosini S, Thivel PX, Druart F, Rakotondrainibe A, Geneston T, Bultel Y (2014) An algorithm for diagnosis of proton exchange membrane fuel cells by electrochemical impedance spectroscopy. Electrochim Acta 135:368–379

    Article  CAS  Google Scholar 

  5. Hung MH, Lin CH, Lee LC, Wang CM (2014) State-of-charge and state-of-health estimation for lithium-ion batteries based on dynamic impedance technique. J Power Sources 268:861–873

  6. Bertocci U, Huet F (1995) Noise analysis applied to electrochemical systems. Corrosion 51:131–144

    Article  CAS  Google Scholar 

  7. Oltra R, Gabrielli C, Huet F, Keddam M (1986) Electrochemical investigation of locally depassivated iron – a comparison of various techniques. Electrochim Acta 31:1505–1511

    Article  Google Scholar 

  8. Homborg AM, Tinga T, van Westing EPM, Zhang Z, Ferrari GM, de Wit JHW, Mol JMC (2014) A critical appraisal of the interpretation of electrochemical noise for corrosion studies. Corrosion 70:971–987

    Article  Google Scholar 

  9. Roberge P, Beaudoin R (1989) Voltage noise measurements on sealed lead-acid batteries. J Power Sources 27:177–186

    Article  CAS  Google Scholar 

  10. Baert DHJ, Vervaet AAK (2003) Small bandwidth measurement of the noise voltage of batteries. J Power Sources 114:357–365

    Article  CAS  Google Scholar 

  11. Martinet S, Durand R, Ozil P, Leblanc P, Blanchard P (1999) Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection. J Power Sources 83:93–99

    Article  CAS  Google Scholar 

  12. Huet F, Nogueira RP, Lailler P, Torcheux L (2006) Investigation of the high-frequency resistance of a lead-acid battery. J Power Sources 158:1012–1018

    Article  CAS  Google Scholar 

  13. Martemianov S, Adiutantov V, Evdokimov YK, Madier L, Maillard F, Thomas A (2015) New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries. J Solid State Electrochem 19:2803–2810

    Article  CAS  Google Scholar 

  14. Martemianov S, Maillard F, Thomas A, Lagonotte P, Madier L (2016) Noise diagnosis of commercial Li-ion batteries using high-order moments. Russ J Electrochem 52:1122–1130

    Article  CAS  Google Scholar 

  15. Maizia R, Dib A, Thomas A, Martemianov S (2017) Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise. J Power Sources 342:553–561

    Article  CAS  Google Scholar 

  16. Astafev EA (2018) Frequency characteristics of hydrogen-air fuel cell electrochemical noise. Fuel Cells 18:755–762

    Article  CAS  Google Scholar 

  17. Astafev EA (2019) Electrochemical noise measurement methodologies of chemical power sources. Instrum Sci Technol 47:233–247. https://doi.org/10.1080/10739149.2018.1521423

    Article  CAS  Google Scholar 

  18. Astafev EA (2019) The instrument for electrochemical noise measurement of chemical power sources. Rev Sci Instrum 90:025104–1–025104–7

  19. Astafev EA, Ukshe AE (2019) Peculiarities of hardware for electrochemical noise measurement in chemical power sources, IEEE Instrum Meas https://doi.org/10.1109/TIM.2018.2889232

  20. Manane Y, Yazami R (2017) Accurate state of charge assessment of lithium-manganese dioxide primary batteries. J Power Sources 359:422–426

    Article  CAS  Google Scholar 

  21. Lee YG, Kim J, Kim S, Kim M (2010) 3.0V-class film-type lithium primary battery with highly improved energy density. J Power Sources 195:3715–3719

    Article  CAS  Google Scholar 

  22. Krause FC, Jones JP, Jones SC, Pasalic J, Billings KJ, West WC, Smart MC, Bugga RV, Brandon EJ, Destephen M (2018) High specific energy lithium primary batteries as power sources for deep space exploration. J Electrochem Soc 165:A2312–A2320

    Article  CAS  Google Scholar 

  23. Kanevskii LS (2009) Special features of discharge characteristics of different types of lithium-thionyl chloride cells and the problem of their diagnostics. Russ J Electrochem 45:835–846

    Article  CAS  Google Scholar 

  24. Roberge PR, Halliop E, Famington MD (1991) Monitoring voltage fluctuations for the characterization of lithium cells. J Power Sources 34:233–241

    Article  CAS  Google Scholar 

  25. Astafev EA, Ukshe AE, Dobrovolsky YA (2018) Measurement of electrochemical noise of a Li/MnO2 primary lithium battery. J Solid State Electrochem 22:3597–3606

    Article  CAS  Google Scholar 

  26. Astafev EA (2018) Electrochemical noise measurement of a Li/SOCl2 primary battery. J Solid State Electrochem 22:3569–3577

    Article  CAS  Google Scholar 

  27. Astafev EA (2019) Wide frequency band electrochemical noise measurement and analysis of a Li/SOCl2 primary battery. J Solid State Electrochem 23:389–396

    Article  CAS  Google Scholar 

  28. Uzundal CB, Ulgut B (2018) A method for voltage noise measurement and its application to primary batteries. J Electrochem Soc 165:A2557–A2562

    Article  CAS  Google Scholar 

  29. Astafev EA, Ukshe AE, Gerasimova EV, Dobrovolsky YA, Manzhos RA (2018) Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads. J Solid State Electrochem 22:1839–1849

    Article  CAS  Google Scholar 

  30. Astaf’ev EA (2018) Electrochemical noise measurement of polymer membrane fuel cell under load. Russ J Electrochem 54:554–560

    Article  Google Scholar 

  31. Denisov ES, Evdokimov YK, Martemianov S, Thomas A, Adiutantov N (2017) Electrochemical noise as a diagnostic tool for PEMFC. Fuel Cells 17:225–237

    Article  CAS  Google Scholar 

  32. Maizia R, Dib A, Thomas A, Martemianov S (2017) Statistical short-time analysis of electrochemical noise generated within a proton exchange membrane fuel cell. J Solid State Electrochem 22:1649–1660

    Article  CAS  Google Scholar 

  33. Grafov BM, Dobrovol’skii YA, Davydov AD, Ukshe AE, Klyuev AL, Astaf’ev EA (2015) Electrochemical noise diagnostics: analysis of algorithm of orthogonal expansions. Russ J Electrochem 51:503–507

    Article  CAS  Google Scholar 

  34. Klyuev AL, Davydov AD, Grafov BM, Dobrovolskii YA, Ukshe AE, Astaf’ev EA (2016) Electrochemical noise spectroscopy: method of secondary Chebyshev spectrum. Russ J Electrochem 52:1001–1005

    Article  CAS  Google Scholar 

  35. Grafov BM, Klyuev AL, Davydov AD, Dobrovolskii YA, Ukshe AE, Astaf’ev EA (2017) Median Chebyshev spectroscopy of electrochemical noise. J Solid State Electrochem 21:915–918

    Article  CAS  Google Scholar 

  36. Timashev SF, Polyakov YS (2007) Review of Flicker noise spectroscopy in electrochemistry. Fluct Noise Lett 7:R15–R17

    Article  Google Scholar 

  37. Astafev EA, Ukshe AE, Manzhos RA, Dobrovolsky YA, Lakeev SG, Timashev SF (2017) Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation. Int J Electrochem Sci 12:1742–1754

    Article  CAS  Google Scholar 

  38. Tyagai VA (1971) Faradic noise of complex electrochemical reactions. Electrochim Acta 16:1647–1654

    Article  CAS  Google Scholar 

  39. Astafev EA, Ukshe AE, Dobrovolsky YA (2018) The model of electrochemical noise of a hydrogen-air fuel cell. J Electrochem Soc 165:F604–F612

    Article  CAS  Google Scholar 

  40. Al-Mazeedi HAA, Cottis RA (2004) A practical evaluation of electrochemical noise parameters as indicators of corrosion type. Electrochim Acta 49:2787–2793

    Article  CAS  Google Scholar 

  41. Reid S, Bell GEC, Edgemon GL (1998) The use of skewness, kurtosis and neural networks for determining corrosion mechanism from electrochemical noise data. In: Corrosion. NACE International, Houston, TX

    Google Scholar 

  42. Astafev EA, Ukshe AE, Leonova LS, Manzhos RA, Dobrovolsky YA (2018) Detrending and other features of data processing in the measurements of electrochemical noise. Russ J Electrochem 54:1117–1125

    Article  CAS  Google Scholar 

  43. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110–113

    Article  CAS  Google Scholar 

  44. Kindermann FM, Noel A, Erhard SV, Jossen A (2015) Long-term equalization effects in Li-ion batteries due to local state of charge inhomogeneities and their impact on impedance measurements. Electrochim Acta 185:107–116

    Article  CAS  Google Scholar 

  45. Schindler S, Bauer M, Petzl M, Danzer MA (2016) Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells. J Power Sources 304:170–180

    Article  CAS  Google Scholar 

  46. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73

    Article  Google Scholar 

  47. Astafev EA (2018) Software and instrumentation methods of resolution enhancement in electrochemical noise measurement. Russ J Electrochem 54:1031–1044. https://doi.org/10.1134/S0424857018130078

    Article  CAS  Google Scholar 

  48. Tyagai VA (1974) Noise in electrochemical systems. Russ J Electrochem 10:3–24

    CAS  Google Scholar 

  49. Bernamont J (1937) Fluctuations de Potential aux Bornes d’un Conducteur Metallique de Faible Volume Parcouru par un Courant. Ann Phys 11:71–140

    Article  Google Scholar 

  50. Bowden W, Grey CP, Hackney S, Wanga F, Paik Y, Iltchev N, Sirotina R (2006) Lithiation of ramsdellite–pyrolusite MnO2; NMR, XRD, TEM and electrochemical investigation of the discharge mechanism. J Power Sources 153:265–273

    Article  CAS  Google Scholar 

  51. Dose WM, Sharma N, Donne SW (2014) Discharge mechanism of the heat treated electrolytic manganese dioxide cathode in a primary Li/MnO2 battery: an in-situ and ex-situ synchrotron X-ray diffraction study. J Power Sources 258:155–163

    Article  CAS  Google Scholar 

  52. Shao-Horn Y, Hackney SA, Cornilsen BC (1997) Structural characterization of heat-treated electrolytic manganese dioxide and topotactic transformation of discharge products in the Li-MnO2 cells. J Electrochem Soc 144:3147–3153

    Article  CAS  Google Scholar 

  53. Buchberger I, Seidlmayer S, Pokharel A, Piana M, Hattendorff J, Kudejova P, Gilles R, Gasteigera HA (2015) Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance. J Electrochem Soc 162:A2737–A2746

    Article  CAS  Google Scholar 

  54. Astafev EA (2018) Comparison of the method and hardware for electrochemical impedance with the method of electrochemical noise measurement and analysis. Russ J Electrochem 54:1022–1030. https://doi.org/10.1134/S0424857018130066

    Article  CAS  Google Scholar 

  55. Denisov ES, Salakhova AS, Adiutantov NA, Evdokimov YK (2017) Fluctuation-noise model for PEM fuel cell. IOP Conf Ser Mater Sci Eng 225:012110. https://doi.org/10.1088/1757-899X/225/1/012110

    Article  Google Scholar 

  56. Schottky W (1918) Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. Ann Phys 57:541–567

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the State Task of the Russian Federation (State Registration No. 01201361853).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Astafev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafev, E.A. Wide-frequency band measurement and analysis of electrochemical noise of Li/MnO2 primary battery. J Solid State Electrochem 23, 1705–1713 (2019). https://doi.org/10.1007/s10008-019-04274-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04274-w

Keywords

Navigation