Skip to main content
Log in

An experimental investigation of three-dimensional mechanical characteristics of gas diffusion layers in proton electrolyte membrane fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, three-dimensional (3D) orthotropic mechanical properties of a commercial gas diffusion layer (GDL) are experimentally investigated. Although GDL is an important 3D structural membrane in proton electrolyte membrane fuel cells (PEMFCs), most papers have merely considered its in-plane linear isotropic characteristics due to the lack of 3D anisotropic mechanical performance investigation. In real operating PEMFCs, GDL is nonlinear orthotropic composite and its mechanical characteristics affect the overall performance of PEMFCs, seriously and directly. In this research, as considering GDL’s valid configuration in PEMFCs, mechanical tests such as compression test, tension test, and shear test are conducted to study its 3D mechanical behavior. Test results present that the GDL behaves in an orthotropic and nonlinear manner. In addition, microstructures of the GDL are observed through scanning electron microscope (SEM) images, to explain its different kinds of mechanical failure performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang C, Wang S, Peng L, Zhang J, Shao Z, Huang J, Sun C, Ouyang M, He X (2016) Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications. Energies 9:1–39

    Google Scholar 

  2. Toghyani S, Nafchi FM, Afshari E, Hasanpour K, Baniasadi E, Atyabi S (2018) Thermal and electrochemical performance analysis of a proton exchange membrane fuel cell under assembly pressure on gas diffusion layer. Int J Hydrog Energy 43(9):4534–4545

    Article  CAS  Google Scholar 

  3. Ferreira RB, Falcão D, Oliveira V, Pinto A (2017) Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment. Electrochim Acta 224:337–345

    Article  CAS  Google Scholar 

  4. Chien C-H, Hu Y-L, Su T-H, Liu H-T, Wang C-T, Yang P-F, Lu Y-X (2016) Effects of bolt pre-loading variations on performance of GDL in a bolted PEMFC by 3-D FEM analysis. Energy 113:1174–1187

    Article  Google Scholar 

  5. Zhiani M, Kamali S, Majidi S (2016) In-plane gas permeability and thought-plane resistivity of the gas diffusion layer influenced by homogenization technique and its effect on the proton exchange membrane fuel cell cathode performance. Int J Hydrog Energy 41(2):1112–1119

    Article  CAS  Google Scholar 

  6. El Oualid S, Lachat R, Candusso D, Meyer Y (2017) Characterization process to measure the electrical contact resistance of Gas Diffusion Layers under mechanical static compressive loads. Int J Hydrog Energy 42(37):23920–23931

    Article  Google Scholar 

  7. Sadeghifar H, Djilali N, Bahrami M (2015) Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load. J Power Sources 273:96–104

    Article  CAS  Google Scholar 

  8. Faydi Y, Lachat R, Meyer Y (2016) Thermomechanical characterisation of commercial gas diffusion layers of a proton exchange membrane fuel cell for high compressive pre-loads under dynamic excitation. Fuel 182:124–130

    Article  CAS  Google Scholar 

  9. Mahmoudi A, Ramiar A, Esmaili Q (2016) Effect of inhomogeneous compression of gas diffusion layer on the performance of PEMFC with interdigitated flow field. Energy Convers Manag 110:78–89

    Article  CAS  Google Scholar 

  10. Prass S, Hasanpour S, Sow PK, Phillion AB, Mérida W (2016) Microscale X-ray tomographic investigation of the interfacial morphology between the catalyst and micro porous layers in proton exchange membrane fuel cells. J Power Sources 319:82–89

    Article  CAS  Google Scholar 

  11. Su Z, Liu C, Chang H, Li C, Huang K, Sui P (2008) A numerical investigation of the effects of compression force on PEM fuel cell performance. J Power Sources 183(1):182–192

    Article  CAS  Google Scholar 

  12. Chippar P, Kyeongmin O, Kang K, Ju H (2012) A numerical investigation of the effects of GDL compression and intrusion in polymer electrolyte fuel cells (PEFCs). Int J Hydrog Energy 37(7):6326–6338

    Article  CAS  Google Scholar 

  13. García-Salaberri PA, Vera M, Zaera R (2011) Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers. Int J Hydrog Energy 36(18):11856–11870

    Article  Google Scholar 

  14. Radhakrishnan V, Haridoss P (2010) Effect of cyclic compression on structure and properties of a gas diffusion layer used in PEM fuel cells. Int J Hydrog Energy 35(20):11107–11118

    Article  CAS  Google Scholar 

  15. Radhakrishnan V, Haridoss P (2011) Effect of GDL compression on pressure drop and pressure distribution in PEMFC flow field. Int J Hydrog Energy 36(22):14823–14828

    Article  CAS  Google Scholar 

  16. Escribano S, Blachot J-F, Ethève J, Morin A, Mosdale R (2006) Characterization of PEMFCs gas diffusion layers properties. J Power Sources 156(1):8–13

    Article  CAS  Google Scholar 

  17. Norouzifard V, Bahrami M (2014) Deformation of PEM fuel cell gas diffusion layers under compressive loading: an analytical approach. J Power Sources 264:92–99

    Article  CAS  Google Scholar 

  18. Gigos P, Faydi Y, Meyer Y (2015) Mechanical characterization and analytical modeling of gas diffusion layers under cyclic compression. Int J Hydrog Energy 40(17):5958–5965

    Article  CAS  Google Scholar 

  19. Kleemann J, Finsterwalder F, Tillmetz W (2009) Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers. J Power Sources 190(1):92–102

    Article  CAS  Google Scholar 

  20. Freunberger SA, Reum M, Evertz J, Wokaun A, Büchi FN (2006) Measuring the current distribution in PEFCs with sub-millimeter resolution I. Methodology. J Electrochem Soc 153(11):A2158–A2165

    Article  CAS  Google Scholar 

  21. Poornesh K, Sohn Y-J, Park G-G, Yang T-H (2012) Gas-diffusion layer’s structural anisotropy induced localized instability of nafion membrane in polymer electrolyte fuel cell. Int J Hydrog Energy 37(20):15339–15349

    Article  CAS  Google Scholar 

  22. ASTM D638 (2010) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken. https://doi.org/10.1520/D0638-10

    Book  Google Scholar 

  23. ASTM D882-12 (2012) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken. https://doi.org/10.1520/D0882

    Book  Google Scholar 

  24. Mason TJ, Millichamp J, Neville TP, El-kharouf A, Pollet BG, Brett DJ (2012) Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells. J Power Sources 219:52–59

    Article  CAS  Google Scholar 

  25. Wang LP, Zhang LH, Jiang JP (2011) Experimental study of assembly clamping pressure on performance of PEM fuel cells. In: Applied mechanics and materials, 44-47 pp:2399-2403. https://doi.org/10.4028/www.scientific.net/AMM.44-47.2399

  26. Chang W, Hwang J, Weng F, Chan S (2007) Effect of clamping pressure on the performance of a PEM fuel cell. J Power Sources 166(1):149–154

    Article  CAS  Google Scholar 

  27. Ihonen J, Jaouen F, Lindbergh G, Sundholm G (2001) A novel polymer electrolyte fuel cell for laboratory investigations and in-situ contact resistance measurements. Electrochim Acta 46(19):2899–2911

    Article  CAS  Google Scholar 

  28. Bazylak A, Sinton D, Liu Z-S, Djilali N (2007) Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. J Power Sources 163(2):784–792

    Article  CAS  Google Scholar 

  29. Xing XQ, Lum KW, Poh HJ, Wu YL (2010) Optimization of assembly clamping pressure on performance of proton-exchange membrane fuel cells. J Power Sources 195(1):62–68

    Article  CAS  Google Scholar 

  30. Makkus RC, Janssen AH, de Bruijn FA, Mallant RK (2000) Use of stainless steel for cost competitive bipolar plates in the SPFC. J Power Sources 86(1-2):274–282

    Article  CAS  Google Scholar 

  31. Davies DP, Adcock PL, Turpin M, Rowen SJ (2000) Bipolar plate materials for solid polymer fuel cells. J Appl Electrochem 30(1):101–105

    Article  CAS  Google Scholar 

  32. Lee W-K, Ho C-H, Van Zee JW, Murthy M (1999) The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. J Power Sources 84(1):45–51

    Article  CAS  Google Scholar 

  33. Chen Y, Jiang C, Cho C (2018) An investigation of the compressive behavior of polymer electrode membrane fuel cell’s gas diffusion layers under different temperatures. Polymers 10(9):971–979

    Article  Google Scholar 

  34. Lai Y-H, Rapaport PA, Ji C, Kumar V (2008) Channel intrusion of gas diffusion media and the effect on fuel cell performance. J Power Sources 184(1):120–128

    Article  CAS  Google Scholar 

  35. Carral C, Mélé P (2018) A constitutive law to predict the compression of gas diffusion layers. Int J Hydrog Energy 43(42):19721–19729

    Article  CAS  Google Scholar 

  36. Kelly PA (2008) A compaction model for liquid composite modeling fibrous materials. In: The 9th international conference on flow processes in composite materials, Montréal, Canada

  37. Chen B, Lang EJ, Chou T-W (1999) Compaction behavior of fabric preforms in resin transfer molding process. In: Proceedings of the 12th international conference on composite materials, pp:5-9

  38. Castanheira L, Silva WO, Lima FHB, Crisci A, Dubau L, Maillard F (2015) Carbon corrosion in proton-exchange membrane fuel cells: effect of the carbon structure, the degradation protocol, and the gas atmosphere. ACS Catal 5(4):2184–2194

    Article  CAS  Google Scholar 

  39. Chen B, Wang J, Yang T, Cai Y, Zhang C, Chan SH, Yu Y, Tu Z (2016) Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode. Energy 54-62(2016):106

    Google Scholar 

  40. Mishra V, Yang F, Pitchumani R (2004) Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cells. J Fuel Cell Sci Technol 1(1):2–9

    Article  CAS  Google Scholar 

  41. Chen J, Bull S (2010) Approaches to investigate delamination and interfacial toughness in coated systems: an overview. J Phys D Appl Phys 44(3):1–19

    CAS  Google Scholar 

  42. Beaumont PW, Soutis C, Hodzic A (2016) The structural integrity of carbon fiber composites: fifty years of progress and achievement of the science, development, and applications. Springer, Switzerland

    Google Scholar 

  43. Zhou P, Wu CW, Ma GJ (2007) Influence of clamping force on the performance of PEMFCs. J Power Sources 163(2):874–881

    Article  CAS  Google Scholar 

  44. Poornesh K, Cho C, Rego AM (2015) Anisotropic distribution of elastic constants in fuel cell gas diffusion layers: experimental validation. Energy and Power 5(1A):40–45

    Google Scholar 

  45. Poornesh K, Chiranth B, Vaz N, Rego AM (2015) Anisotropic distribution of elastic constants in fuel cell gas diffusion layers: theoretical assessment. Energy and Power 5(1A):34–39

    Google Scholar 

  46. Chen Y, Jiang C, Cho C (2019) Effects of freeze–thaw thermal cycles on the mechanical degradation of the gas diffusion layer in polymer electrolyte membrane fuel cells. Polymers 11(3):428–441

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Inha University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongdu Cho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jiang, C. & Cho, C. An experimental investigation of three-dimensional mechanical characteristics of gas diffusion layers in proton electrolyte membrane fuel cells. J Solid State Electrochem 23, 2021–2030 (2019). https://doi.org/10.1007/s10008-019-04273-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04273-x

Keywords

Navigation