Skip to main content

Advertisement

Log in

Solid-state graphene-based supercapacitor with high-density energy storage using ionic liquid gel electrolyte: electrochemical properties and performance in storing solar electricity

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties and high-density energy storage performance of graphene nano-platelet-based solid-state electrical double-layer supercapacitor device are reported. The graphene device is fabricated with electrolyte comprising of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) room temperature ionic liquid and LiClO4 dopant entrapped within polymer matrix formulated as a gel. The mesoporous graphene electrode was formed via dispersion in amorphous polyvinylidene (PVdF2) host over flexible graphite sheets with minimal graphene layer (< 5-layer) stacking. Exploiting the abundance of charge ion species in the ionic liquid gel electrolyte and pervasive accesses to the graphene platelets via voids, high double-layer specific capacitance of 214 Fg−1 was realized based on cyclic voltammetry data. Impedance studies show a low (0.79 Ω cm2) charge transfer resistance and a short Warburg range indicating highly diffusive ionic transport capability in the ionic liquid gel electrolyte. The Bode analysis showed high figure of merit for pulse power with 1145 ms response time and high-density (27 kWkg−1) pulsed power capability of the graphene supercapacitor. The charge–discharge data show graphene supercapacitor by availing high (~ 2 V) stable potential window in ionic liquid electrolyte gel greatly boosted the energy density to 33.3 Whkg−1 at power density 3 kWkg−1 with minimal decrement to 24.7 Whkg−1 at high ~ 3 Ag−1 discharge current density. By integration with solar cells, direct storage of light-generated electricity and discharge behavior of ionic liquid electrolyte graphene supercapacitor is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  2. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  3. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrode. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  4. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2253

    Article  CAS  PubMed  Google Scholar 

  5. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J-G, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220

    Article  CAS  Google Scholar 

  6. Yan XB, Chen JT, Yang J, Xue QJ, Miele P (2010) Fabrication of free-standing electrochemically active and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces 2:2521–2529

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  8. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  PubMed  Google Scholar 

  9. Huang X, Zeng Z, Fan Z, Liu J, Zhang H (2012) Graphene-based electrodes. Adv Mater 24:5979–6004

    Article  CAS  PubMed  Google Scholar 

  10. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674

    Article  CAS  Google Scholar 

  11. Deng W, Ji X, Gomez-Mingot M, Lu F, Chen Q, Banks CE (2012) Graphene electrochemical supercapacitors: the influence of oxygen functional groups. Chem Commun 48:2770–2772

    Article  CAS  Google Scholar 

  12. Xu Z, Li Z, Holt CMB, Tan X, Wang H, Amirkhiz BS, Tyler S, Mitlin D (2012) Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J Phys Chem Lett 3:2928–2933

    Article  CAS  PubMed  Google Scholar 

  13. Liu W, Yan X, Lang J, Pu J, Xue Q (2013) Supercapacitors based on graphene nanosheets using different non-aqueous electrolytes. New J Chem 37:2186–2195

    Article  CAS  Google Scholar 

  14. Shao Q, Tang J, Lin Y, Li J, Qin F, Zhang K, Yuan J, Qin L (2015) Ionic liquid modified graphene for supercapacitors with high rate capability. Electrochim Acta 176:1441–1446

    Article  CAS  Google Scholar 

  15. Kim TY, Lee HW, Stroller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2011) High performance supercapacitor based on poly (ionic liquid)-modified graphene electrodes. ACS Nano 5:436–442

    Article  CAS  PubMed  Google Scholar 

  16. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Mater 2:37–54

    Google Scholar 

  17. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279

    Article  CAS  PubMed  Google Scholar 

  18. Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronic. Energy Environ Sci 6:2698–2705

    Article  CAS  Google Scholar 

  19. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshaze HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    Article  CAS  PubMed  Google Scholar 

  20. Wang K, Zou W, Quan B, Yu A, Wu H, Jiang P, Wei Z (2011) An all-solid-state flexible micro-supercapacitor on a chip. Adv Energy Mater 1:1068–1072

    Article  CAS  Google Scholar 

  21. Zhang Z, Chen X, Chen P, Guan G, Qiu L, Lin H, Yang Z, Bai W, Luo Y, Peng H (2014) Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv Mater 26:466–470

    Article  CAS  PubMed  Google Scholar 

  22. Zhan Y, Mei Y, Zheng L (2014) Materials capability and device performance in flexible electronics for the internet of things. J Mater Chem C 2:1220–1232

    Article  CAS  Google Scholar 

  23. Somov A, Ho CC, Passerone R, Evans JW, Wright PK (2012) Towards extending sensor node lifetime with printed supercapacitors. Wireless Sensor Networks; Proceedings of the 9th European Conference (EWSN 2012), Trento, Italy: 212–227

  24. Choudhury NA, Sampath S, Shukla AK (2009) Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci 2:55–67

    Article  CAS  Google Scholar 

  25. Hu XL, Hou GM, Zhang MQ, Rong MZ, Ruan WH, Giannelis EP (2012) New nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica. J Mater Chem 22:18961–18967

    Article  CAS  Google Scholar 

  26. Batisse N, Raymundo-Piñero EA (2017) Self-standing hydrogel neutral electrolyte for high voltage and safe flexible supercapacitors. J Power Sources 348:168–174

    Article  CAS  Google Scholar 

  27. Chodankar NR, Dubal DP, Lokhande AC, Lokhande CD (2015) Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors. J Colloid Interface Sci 460:370–376

    Article  CAS  PubMed  Google Scholar 

  28. Weng Z, Su Y, Wang D, Li F, Du J, Cheng H (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922

    Article  CAS  Google Scholar 

  29. Choi BG, Chang S, Kang H, Park CP, Kim HJ, Hong WH, Lee S, Huh YS (2012) High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 4:4983–4988

    Article  CAS  PubMed  Google Scholar 

  30. Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042–4049

    Article  CAS  PubMed  Google Scholar 

  31. Niu Z, Zhang L, Liu L, Zhu B, Dong H, Chen X (2013) All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv Mater 25:4035–4042

    Article  CAS  PubMed  Google Scholar 

  32. Choi BG, Hong J, Hong WH, Hammond PT, Park H (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5:7205–7213

    Article  CAS  PubMed  Google Scholar 

  33. Eftekhari A (2017) Supercapacitors utilizing ionic liquids. Energy Storage Mateerials 9:47–69

    Article  Google Scholar 

  34. Wei D, Ng TW (2009) Application of novel room temperature ionic liquids in flexible supercapacitors. Electrochem Commun 11:1996–1999

    Article  CAS  Google Scholar 

  35. Lei Z, Liu Z, Wang H, Sun X, Lu L, Zhao XS (2013) A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte. J Mater Chem A:2313–2321

  36. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  PubMed  Google Scholar 

  37. Yang C, Huang P, Luo X, Wang C, Li C, Wu Y, Chang J (2015) Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte. ChemSusChem 8:1779–1786

    Article  CAS  PubMed  Google Scholar 

  38. Yang H, Kannappan S, Pandian AS, Jang J, Lee YS, Lu W (2017) Graphene supercapacitor with both high power and energy density. Nanotechnology 28:445401–445411

    Article  CAS  PubMed  Google Scholar 

  39. Kim J, Kim S (2014) Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim Acta 119:11–15

    Article  CAS  Google Scholar 

  40. Chen Y, Zhang X, Zhang D, Ma Y (2012) High power density of graphene-based supercapacitors in ionic liquid electrolytes. Mater Lett 68:475–477

    Article  CAS  Google Scholar 

  41. Wang X, Lu C, Peng H, Zhang X, Wang Z, Wang G (2016) Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors. J Power Sources 324:188–198

    Article  CAS  Google Scholar 

  42. Kim J, Kim S (2014) Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties. Appl Surf Sci 295:31–37

    Article  CAS  Google Scholar 

  43. Lin Z, Taberna P, Simon P (2016) Graphene-based supercapacitors using eutectic ionic liquid mixture electrolyte. Electrochim Acta 206:446–451

    Article  CAS  Google Scholar 

  44. Obeidat AM, Rastogi AC (2018) Electrochemical energy storage performance of asymmetric PEDOT and graphene electrode-based supercapacitors using ionic liquid gel electrolyte. J Appl Electrochem 48:747–764

    Article  CAS  Google Scholar 

  45. Tamilarasan P, Ramaprabhu S (2013) Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 51:37–81

    Article  CAS  Google Scholar 

  46. Singh MK, Suleman M, Kumar Y, Hashmi SA (2015) A novel configuration of electrical double layer capacitor with plastic crystal based gel polymer electrolyte and graphene nano-platelets as electrodes: a high rate performance. Energy 80:465–473

    Article  CAS  Google Scholar 

  47. Pandey GP, Rastogi AC (2012) Graphene-based all-solid-state supercapacitor with ionic liquid gel polymer electrolyte. MRS Proc 1440. https://doi.org/10.1557/opl.2012.1279

  48. Obeidat AM, Rastogi AC (2016) Graphene and poly (3, 4-ethylenedioxythiophene) (PEDOT) based hybrid supercapacitors with ionic liquid gel electrolyte in solid state design and their electrochemical performance in storage of photovoltaic generated electricity. MRS Advances 1(53):3565–3571

    Article  CAS  Google Scholar 

  49. Ujjain SK, Sahu V, Sharma RK, Singh G (2015) High performance all solid state, flexible supercapacitor based on ionic liquid functionalized graphene. Electrochim Acta 157:245–251

    Article  CAS  Google Scholar 

  50. Feng L, Wang K, Zhang X, Sun X, Li C, Ge X, Ma Y (2018) Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocpmposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater 28:1704463–1704469

    Article  CAS  Google Scholar 

  51. Yang X, Zhang L, Zhang F, Zhang T, Huang Y, Chen Y (2014) A high-performance all-solid-state supercapacitor with graphene-doped carbon material electrodes and a graphene oxide-doped ion gel electrolyte. Carbon 72:381–386

    Article  CAS  Google Scholar 

  52. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6:2667–2673

    Article  CAS  PubMed  Google Scholar 

  53. Ferrari AC (2007) Raman spectroscopy of graphene and graphite; disorder, electron-phonon coupling, doping and nondiabetic effects. Solid State Commun 143:47–57

    Article  CAS  Google Scholar 

  54. Childres I, Jauregui LA, Park W, Cao H, Chen YP (2013) Raman spectroscopy of graphene and related materials. New developments in photon and materials research, ed. J. I. Jang, Nova Science Publishers

  55. Vijayakumar M, Schwenzer B, Shutthanandan V, Hu J, Liu J, Aksay IA (2014) Elucidating graphene–ionic liquid interfacial region: a combined experimental and computational study. Nano Energy 3:152–158

    Article  CAS  Google Scholar 

  56. Xiao L, Johnson KE (2003) Electrochemistry of 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate ionic liquid. J Electrochem Soc 150:E307–E311

    Article  CAS  Google Scholar 

  57. Zheng J, Moganty SS, Goonetilleke PC, Baltus RE, Roy D (2011) A comparative study of the electrochemical characteristics of [Emim+][BF4 ] and [Bmim+][BF4 ] ionic liquids at the surfaces of carbon nanotube and glassy carbon electrodes. J Phys Chem C 115:7527–7537

    Article  CAS  Google Scholar 

  58. Conway BE (1999) Electrochemical supercapacitors. Springer, Boston, MA

    Book  Google Scholar 

  59. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A 292–A 300

    Article  CAS  Google Scholar 

  60. Miller JR, In: Proceedings of the eighth international seminar on double layer capacitors and similar energy storage devises, Deerfield Beach, Florida, December 1998.

  61. Lufrano F, Staiti P, Minutoli M (2003) Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy. J Power Sources 124:314–320

    Article  CAS  Google Scholar 

  62. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  PubMed  Google Scholar 

  63. Vivekchand SR, Chandra SR, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120:9–13

    Article  CAS  Google Scholar 

  64. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2118–2122

    Article  CAS  Google Scholar 

  65. Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner ARD, Chen D, Ruoff RS (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4:1227–1233

    Article  CAS  PubMed  Google Scholar 

  66. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser Scribing of High-Performance and Flexible Graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  CAS  PubMed  Google Scholar 

  67. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  68. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541

    Article  CAS  PubMed  Google Scholar 

  69. Beidagh M, Wang Z, Gu L, Wang C (2012) Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes. J Solid State Electrochem 16:3341–3348

    Article  CAS  Google Scholar 

  70. Lv W, Tang DM, He YB, You CH, Shi ZQ, Chen XC, Chen CM, Hou PX, Liu C, Yang QH (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3:3730–3736

    Article  CAS  PubMed  Google Scholar 

  71. Lu W, Henry K, Turchi C, Pellegrino J (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361–A367

    Article  CAS  Google Scholar 

  72. Pandey GP, Kumar Y, Hashmi SA (2010) Ionic liquid incorporated polymer electrolytes for supercapacitor application. Indian J Chem 49A:743–751

    CAS  Google Scholar 

  73. Sillars FB, Fletcher SI, Mirzaeian M, Hall PJ (2012) Variation of electrochemical capacitor performance with room temperature ionic liquid electrolyte viscosity and ion size. Phys Chem Chem Phys 14:6094–6100

    Article  CAS  PubMed  Google Scholar 

  74. Huang P, Luo X, Peng Y, Pu N, Ger M, Yang C, Wu T, Chang J (2015) Ionic liquid electrolytes with various constituent ions for graphene-based supercapacitors. Electrochim Acta 161:371–377

    Article  CAS  Google Scholar 

  75. Liu W, Yan X, Lang J, Xue Q (2011) Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains. J Mater Chem 21:13205–13212

    Article  CAS  Google Scholar 

  76. Liu N, Luo F, Wu H, Liu Y, Zhang C (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525

    Article  CAS  Google Scholar 

  77. Kim TY, Lee HW, Kim JE, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. AC Nano 4:1612–1618

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Science Foundation, under Award Number 1318202, “Partnership for Innovation in Electrochemical Energy Storage” which is gratefully acknowledged. VL thanks the University Grant Commission (UGC) India for the Raman visiting fellowship. The authors also acknowledge the grant ADLG-181 from Analytical and Diagnostics Laboratory (ADL), a part of Center of Excellence in Small Scale Integration and Packaging at Binghamton University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Rastogi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obeidat, A.M., Luthra, V. & Rastogi, A.C. Solid-state graphene-based supercapacitor with high-density energy storage using ionic liquid gel electrolyte: electrochemical properties and performance in storing solar electricity. J Solid State Electrochem 23, 1667–1683 (2019). https://doi.org/10.1007/s10008-019-04272-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04272-y

Navigation