Skip to main content
Log in

Quantum conductance investigation on carbon nanotube–based antibiotic sensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured carbon material (NSCM) based chemiresistive sensors are popular for sensing different analytes because of their high sensitivity, low cost, and simple construction compared with the conventional sensors. In this paper, the carbon strand (bulk) containing carbon nanostructured materials is fabricated through high-density polyethylene (HDPE). HDPE has been used as a carbon source and carbon strand is grown by pulsed arc discharge method between two hollow metallic rods in the presence of the HDPE. Later on, these electrodes have been used as contacts in the proposed structure. The analyzed structure as a quasi-metallic multi-walled carbon nanotube (MWCNT) based chemiresistive sensor is considered for electrochemical sensing of amoxicillin, penicillin-G, and ampicillin antibiotics. Therefore, the MWCNT quantum conductance as a modeling platform is employed. Finally, current-voltage (I-V) characteristics of samples are investigated in the presence of antibiotic materials for different conditions. To this end, the proposed model is compared with experimental data and favorable agreement is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balarak D, Mostafapour F, Bazrafshan E, Saleh TA (2017) Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes. Water Sci Technol 75:1599–1606

    Article  CAS  PubMed  Google Scholar 

  2. Kumar AS, Sornambikai S, Deepika L, Zen J-M (2010) Highly selective immobilization of amoxicillin antibiotic on carbon nanotube modified electrodes and its antibacterial activity. J Mater Chem 20:10152–10158

    Article  CAS  Google Scholar 

  3. Zervosen A, Sauvage E, Frère J-M, Charlier P, Luxen A (2012) Development of new drugs for an old target—the penicillin binding proteins. Molecules 17:12478–12505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mehrani MJ, Tashayoei MR, Ferdowsi A, Hashemi H (2016) Qualitative evaluation of antibiotics in WWTP and review of some antibiotics removal methods. Int Acad J Sci Eng 3:11–22

    Google Scholar 

  5. Ji L, Chen W, Bi J, Zheng S, Xu Z, Zhu D, Alvarez PJ (2010) Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ Toxicol Chem 29:2713–2719

    Article  CAS  PubMed  Google Scholar 

  6. Mohammadi A, Kazemipour M, Ranjbar H, Walker RB, Ansari M (2015) Amoxicillin removal from aqueous media using multi-walled carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct 23:165–169

    Article  CAS  Google Scholar 

  7. Diekema DJ, Pfaller MA (2013) Rapid detection of antibiotic-resistant organism carriage for infection prevention. Clin Infect Dis 56:1614–1620

    Article  CAS  PubMed  Google Scholar 

  8. Zhou L, Li D-J, Gai L, Wang J-P, Li Y-B (2012) Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sensors Actuators B Chem 162:201–208

    Article  CAS  Google Scholar 

  9. Yola ML, Eren T, Atar N (2014) Molecularly imprinted electrochemical biosensor based on Fe@ Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285

    Article  CAS  PubMed  Google Scholar 

  10. Moraes FC, Silva TA, Cesarino I, Lanza MR, Machado SA (2013) Antibiotic detection in urine using electrochemical sensors based on vertically aligned carbon nanotubes. Electroanalysis 25:2092–2099

    Article  CAS  Google Scholar 

  11. Chen B, Ma M, Su X (2010) An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and β-lactamase on glassy carbon electrode. Anal Chim Acta 674:89–95

    Article  CAS  PubMed  Google Scholar 

  12. Lan L, Yao Y, Ping J, Ying Y (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Lopez B, Merkoci A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  CAS  Google Scholar 

  14. Cesarino I, Moraes FC, Machado SA (2011) A biosensor based on polyaniline-carbon nanotube core-shell for electrochemical detection of pesticides. Electroanalysis 23:2586–2593

    Article  CAS  Google Scholar 

  15. Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19:3214–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramnani P, Saucedo NM, Mulchandani A (2016) Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 143:85–98

    Article  CAS  PubMed  Google Scholar 

  17. Leyden MR, Schuman C, Sharf T, Kevek J, Remcho VT, Minot ED (2010) Fabrication and characterization of carbon nanotube field-effect transistor biosensors. In: Shinar R, Kymissis I (eds) Organic semiconductors in sensors and bioelectronics III, vol 7779. San Diego, Calif, USA

  18. Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451

    Article  CAS  Google Scholar 

  19. Absalan G, Akhond M, Ershadifar H (2015) Highly sensitive determination and selective immobilization of amoxicillin using carbon ionic liquid electrode. J Solid State Electrochem 19:2491–2499

    Article  CAS  Google Scholar 

  20. Ferraz BR, Leite FR, Malagutti AR (2016) Highly sensitive electrocatalytic determination of pyrazinamide using a modified poly (glycine) glassy carbon electrode by square-wave voltammetry. J Solid State Electrochem 20:2509–2516

    Article  CAS  Google Scholar 

  21. Shahrokhian S, Hosseini-Nassab N, Kamalzadeh Z (2014) Fabrication of an electrochemical sensor based on the electrodeposition of Pt nanoparticles on multiwalled carbon nanotubes film for voltammetric determination of ceftriaxone in the presence of lidocaine, assisted by factorial-based response-surface methodology. J Solid State Electrochem 18:77–88

    Article  CAS  Google Scholar 

  22. Majdi S, Jabbari A, Heli H, Yadegari H, Moosavi-Movahedi A, Haghgoo S (2009) Electrochemical oxidation and determination of ceftriaxone on a glassy carbon and carbon-nanotube-modified glassy carbon electrodes. J Solid State Electrochem 13:407–416

    Article  CAS  Google Scholar 

  23. Hasanpour F, Ensafi AA, Khayamian T (2010) Simultaneous chemiluminescence determination of amoxicillin and clavulanic acid using least squares support vector regression. Anal Chim Acta 670:44–50

    Article  CAS  PubMed  Google Scholar 

  24. Tang R, Shi Y, Hou Z, Wei L (2017) Carbon nanotube-based chemiresistive sensors. Sensors 17:882

    Article  CAS  Google Scholar 

  25. Sahihazar MM, Nouri M, Rahmani M, Ahmadi MT, Kasani H (2018) Fabrication of carbon nanoparticle strand under pulsed arc discharge. Plasmonics 13:2377–2386

    Article  CAS  Google Scholar 

  26. Nouri M, Meshginqalam B, Sahihazar MM, Dizaji RSP, Ahmadi MT, Ismail R (2018) Experimental and theoretical investigation of sensing parameters in carbon nanotube-based DNA sensor. IET Nanobiotechnol 12:1125–1129

    Article  PubMed  Google Scholar 

  27. Kasani H, Khodabakhsh R, Ahmadi MT, Ochbelagh DR, Ismail R (2017) Electrical properties of MWCNT/HDPE composite-based MSM structure under neutron irradiation. J Electron Mater 46:2548–2555

    Article  CAS  Google Scholar 

  28. Kasani H, Taghi Ahmadi M, Khoda-Bakhsh R, RezaeiOchbelagh D, Ismail R (2016) Influences of Sr-90 beta-ray irradiation on electrical characteristics of carbon nanoparticles. J Appl Phys 119:124510

    Article  CAS  Google Scholar 

  29. Helbling T, Hierold C, Durrer L, Roman C, Pohle R, Fleischer M (2008) Suspended and non-suspended carbon nanotube transistors for NO2 sensing–a qualitative comparison. Phys Status Solidi B 245:2326–2330

    Article  CAS  Google Scholar 

  30. Abadi HKF, Ahmadi M, Yusof R, Saeidmanesh M, Rahmani M, Kiani MJ, Ghadiry M (2014) Development of carbon nanotube based biosensors model for detection of single-nucleotide polymorphism. Sci Adv Mater 6:513–519

    Article  CAS  Google Scholar 

  31. Nshimiyimana JP, Zhang J, Hu X, Chi X, Wu P, Liu S, Zhang Z, Chu W, Sun L (2017) Controlling conducting channels of single-walled carbon nanotube array with atomic force microscopy. Appl Nanosci 7:759–764

    Article  CAS  Google Scholar 

  32. Wang F, Swager TM (2011) Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. J Am Chem Soc 133:11181–11193

    Article  CAS  PubMed  Google Scholar 

  33. Wong H-SP, Akinwande D (2011) Carbon nanotube and graphene device physics. Cambridge University Press, Cambridge

    Google Scholar 

  34. Imam S-A, Kalam N, Abdhullah S (2014) Temperature dependence of carbon nanotube field effect transistor under non-ballistic conduction considering different dielectric materials. Nanosci Nanotechnol 4:52–58

    Google Scholar 

  35. Biercuk MJ, Ilani S, Marcus CM, McEuen PL (2007) Electrical transport in single-wall carbon nanotubes. In: Carbon nanotubes, vol 111. Springer, pp 455-493

  36. Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett 27:338–340

    Article  Google Scholar 

  37. Naeemi A, Meindl JD (2008) Performance modeling for single-and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans Electron Devices 55:2574–2582

    Article  CAS  Google Scholar 

  38. Naeemi A, Meindl JD (2007) Physical modeling of temperature coefficient of resistance for single-and multi-wall carbon nanotube interconnects. IEEE Electron Device Lett 28:135–138

    Article  CAS  Google Scholar 

  39. Naeemi A, Meindl JD (2005) Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI. IEEE Electron Device Lett 26:476–478

    Article  Google Scholar 

  40. Urbina A, Echeverria I, Pérez-Garrido A, Díaz-Sánchez A, Abellán J (2003) Quantum conductance steps in solutions of multiwalled carbon nanotubes. Phys Rev Lett 90:106603

    Article  CAS  PubMed  Google Scholar 

  41. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  42. Bushmaker AW, Oklejas V, Walker D, Hopkins AR, Chen J, Cronin SB (2016) Single-ion adsorption and switching in carbon nanotubes. Nat Commun 7:10475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jarillo-Herrero PD (2005) Quantum transport in carbon nanotubes. Ph.D. thesis, TU Delft, Delft

  44. Grujicic M, Cao G, Singh R (2003) The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes. Appl Surf Sci 211:166–183

    Article  CAS  Google Scholar 

  45. Takane Y, Wakabayashi K (2003) Random-matrix approach to quantum electron transport in metallic carbon nanotubes. J Phys Soc Jpn 72:2710–2713

    Article  CAS  Google Scholar 

  46. Das MP (2010) Mesoscopic systems in the quantum realm: fundamental science and applications. Adv Nat Sci Nanosci Nanotechnol 1:043001

    Article  CAS  Google Scholar 

  47. Close GF, Wong H-SP (2008) Assembly and electrical characterization of multiwall carbon nanotube interconnects. IEEE Trans Nanotechnol 7:596–600

    Article  Google Scholar 

  48. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. science 297:787–792

    Article  CAS  PubMed  Google Scholar 

  49. Li HJ, Lu W, Li J, Bai X, Gu C (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:086601

    Article  CAS  PubMed  Google Scholar 

  50. Chimowa G, Linganiso EC, Churochkin D, Coville NJ, Bhattacharyya S (2011) Origin of conductivity crossover in entangled multiwalled carbon nanotube networks filled by iron. Phys Rev B 84:205429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Miss Elnaz Khoramak and Mr. Reza Alizadeh at the Urmia University for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Moutab Sahihazar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moutab Sahihazar, M., Ahmadi, M.T., Nouri, M. et al. Quantum conductance investigation on carbon nanotube–based antibiotic sensor. J Solid State Electrochem 23, 1641–1650 (2019). https://doi.org/10.1007/s10008-019-04261-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04261-1

Keywords

Navigation