Passivity of titanium: part II, the defect structure of the anodic oxide film

  • Bumwook Roh
  • Digby D. MacdonaldEmail author
Original Paper


The kinetic parameters of the formation of the anodic titanium oxide film on Ti in 0.5 M H2SO4 have been determined using potentiostatic polarization, electrochemical impedance spectroscopy (EIS), and the Mott-Schottky analysis (MSA). The findings are interpreted in terms of the point defect model (PDM). The oxygen vacancy is found to be the dominant point defect under all conditions studied with the metal interstitial being the minority defect. From MSA, the oxygen vacancy concentration was found to exponentially decrease from 5.03 × 1020 to 3.91 × 1019 cm−3 as the film formation voltage was increased from 2.24 to 10.24 VSHE. Using a value for the electric field strength of 1.734 × 106 V/cm, as determined by previous modeling with the PDM together with a fitted expression for the donor density and film formation potential, the oxygen vacancy diffusivity was found to be 2.6 × 10−16 cm2/s.


Titanium Anodic oxide film Point defect structure Passivity 



Investigator #2 gratefully acknowledges the partial support of this work by the FUTURE (Fundamental Understanding of Transport Under Reactor Extremes), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) (neutron scattering studies).

Funding information

This work received support from the Pennsylvania State University by the US Department of Energy through Grant No. DE-FG02-01ER15238 and by the Hyundai Motor Company.


  1. 1.
    Wendt S, Schaub R, Matthiesen J, Vestergaard EL, Wahlstrom E, Rasmussen MD, Thostrup P, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Surf Sci 598(1-3):226–245CrossRefGoogle Scholar
  2. 2.
    Onda K, Li B, Petek H (2004) Phys Rev B 70(4):045415CrossRefGoogle Scholar
  3. 3.
    Schaub R, Wahlstrom E, Ronnau A, Laegsgaard E, Stensgaard I, Besenbacher F (2003) Science 299(5605):377–379CrossRefGoogle Scholar
  4. 4.
    Adán C, Marugán J, Sánchez E, Pablos C, van Grieken R (2016) Electrochim Acta 191:521–529CrossRefGoogle Scholar
  5. 5.
    Kofstad P (1967) J Less-Common Metals 13:653CrossRefGoogle Scholar
  6. 6.
    Ellerbrock D, Macdonald DD (2014) Passivity of titanium, part 1: film growth model diagnostics. J Solid State Electrochem 18(5):1485–1493CrossRefGoogle Scholar
  7. 7.
    Macdonald DD (1992) J Electrochem Soc 139(12):3434CrossRefGoogle Scholar
  8. 8.
    Macdonald DD (1999) Pure Appl Chem 71(6):951–978CrossRefGoogle Scholar
  9. 9.
    Macdonald DD, Sun A, Priyantha N, Jayaweera P (2004) J Electroanal Chem 572(2):421–431CrossRefGoogle Scholar
  10. 10.
    Priyantha N, Jayaweera P, Macdonald DD, Sun A (2004) J Electroanal Chem 572(2):409–419CrossRefGoogle Scholar
  11. 11.
    Marsh J, Gorse D (1998) Electrochim Acta 43(7):659–670CrossRefGoogle Scholar
  12. 12.
    Kudelka S, Michaelis A, Schultze JW (1995) Ber Bunsenges Phys Chem 99(8):1020–1027CrossRefGoogle Scholar
  13. 13.
    Sikora E, Sikora J, Macdonald DD (1996) Electrochim Acta 41(6):783–789CrossRefGoogle Scholar
  14. 14.
    Roh B-W (2005) Defect properties of anodic oxide films on titanium and the impact of oxygen vacancies on the oxygen electrode reaction, Ph.D. dissertation, Department of Materials Science and Engineering, Pennsylvania State UniversityGoogle Scholar
  15. 15.
    Baumard JF, Panis D, Anthony AM (1977) J Solid State Chem 20(1):43–51CrossRefGoogle Scholar
  16. 16.
    Akse JR, Whitehurst HB (1978) J Phys Chem Solids 39(5):457–465CrossRefGoogle Scholar
  17. 17.
    Hyde BG, Bursell LA (1970) The chemistry of extended defects in non-metallic solids. North-Holland Publ, AmsterdamGoogle Scholar
  18. 18.
    Kofstad P (1972) Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Wiley, New YorkGoogle Scholar
  19. 19.
    Millot F, Blanchin M-G, Tetot R, Marucco J-F, Poumellec B, Picard C, Touzelin B (1987) Prog Solid State Chem 17(4):263–293CrossRefGoogle Scholar
  20. 20.
    Iguchi E, Yajima K (1972) J Phys Soc Jpn 32(5):1415–1421CrossRefGoogle Scholar
  21. 21.
    Balachandran U, Eror NG (1988) J Mater Sci 23(8):2676–2682CrossRefGoogle Scholar
  22. 22.
    Iguchi E, Yajima K (1972) Trans Jpn Inst Met 13(1):45–49CrossRefGoogle Scholar
  23. 23.
    Millot F, Picard C (1988) Solid State Ionics 28-30:1344–1348CrossRefGoogle Scholar
  24. 24.
    Dennis PF, Freer R (1993) J Mater Sci 28(17):4804–4810CrossRefGoogle Scholar
  25. 25.
    Xiong G, Joly AG, Beck KM, Hess WP (2006) Phys Stat Sol C 3:3598Google Scholar
  26. 26.
    Manning PS, Sirman JS, Souze RAD, Kilner JA (1997) Solid State Ionics 100(1):1–10CrossRefGoogle Scholar
  27. 27.
    Solmon H (1992) Ph. D. Thesis, University ParisGoogle Scholar
  28. 28.
    Ridder M, Welzenis RG v, Brongersma HH, Kreissig U (2003) Solid State Ionics 158(1-2):67–77CrossRefGoogle Scholar
  29. 29.
    Bojinov M, Hansson-Lyyra L, Kinnunen P, Saario T, Sirki P (2005) J ASTM Int 2(1):12820CrossRefGoogle Scholar
  30. 30.
    Waser RM (1989) J Am Ceram Soc 72(12):2234–2240CrossRefGoogle Scholar
  31. 31.
    Triana CA, Granqvist CG, Niklasson GA (2016) Optical absorption and small-polaron hopping in oxygen deficient and lithium-ion-intercalated amorphous titanium oxide films. J Appl Phys 119(1):015701CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hyundai Motor CompanyMabuk-RiRepublic of Korea
  2. 2.Departments of Nuclear Engineering and Materials Science and EngineeringUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations