Skip to main content

Advertisement

Log in

Development of a tyrosinase-based biosensor for bisphenol A detection using gold leaf–like microstructures

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple one-step electrodeposition without template allowed the synthesis of gold microstructures on a screen-printed carbon electrode. Chloroauric ions were reduced by applying a constant potential of − 0.6 V during 600 s. A preferential growth along the <111> directions produced leaf-like structures as confirmed by scanning electron microscopy and X-ray diffraction. The as-prepared Au microstructures worked as a support for tyrosinase immobilization allowing the preparation of a highly selective and sensitive biosensor for bisphenol A (BPA) detection. The cyclic voltammograms exhibit a well-defined anodic peak at 0.24 V in phosphate buffer solution (0.1 mol L−1, pH 7.0). The enzyme creates favorable conditions for the adsorption of BPA, and after 10 min of accumulation time, the calibration curve was linear in the range of 0.5–50 μmol L−1 with a detection limit of 77 nmol L−1 (S/N = 3) and a relative standard deviation (RSD%) of 0.54% (n = 10). Furthermore, the proposed biosensor displayed long-term stability and was successfully applied to determine BPA in spiked water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reghunadhan Nair CP (2004) Advances in addition-cure phenolic resins. Prog Polym Sci 29(5):401–498

    Article  CAS  Google Scholar 

  2. Lehmler HJ, Buyun L, Gadogbe M, Wei B (2018) Exposure to bisphenol A, bisphenol F, and bisphenol S in U.S. adults and children: the National Health and Nutrition Examination Survey 2013−2014. ACS Omega 3(6):6523–6532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramadan M, Sherman M, III RJ, Chaluvadi A, Swift L, Posnack NG (2018) Disruption of neonatal cardiomyocyte physiology following exposure to bisphenol-A. Sci Rep 8(1):7356–7367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. U.S. Food & Drug Administration (2014) Bisphenol A (BPA): use in food contact application. https://www.fda.gov/newsevents/publichealthfocus/ucm064437.htm. Accessed 28 Mar 2019

  5. Česen M, Lambropoulou D, Laimou-Geraniou M, Kosjek T, Blaznik U, Heath D, Heath E (2016) J Agric Food Chem 64(46):8866–8875

    Article  CAS  PubMed  Google Scholar 

  6. Torres A, Ramirez C, Romero J, Guerrero G, Valenzuela X, Guarda A, Galotto MJ (2015) Experimental and theoretical study of bisphenol A migration from polycarbonate into regulated EU food simulant. Eur Food Res Technol 240(2):335–343

    Article  CAS  Google Scholar 

  7. Paseiro-Cerrato R, DeVries J, Begley TH (2017) Evaluation of short-term and long-term migration testing from can coatings into food simulants. J Agric Food Chem 5:2594–2602

    Article  CAS  Google Scholar 

  8. Im J, Löffler FE (2016) Fate of bisphenol A in terrestrial and aquatic environments. Environ Sci Technol 50(16):8403–8416

    Article  CAS  PubMed  Google Scholar 

  9. Melcer H, Klecka G (2011) Treatment of wastewaters containing bisphenol A: state of the science review. Water Environ Res 83(7):650–666

    Article  CAS  PubMed  Google Scholar 

  10. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  CAS  PubMed  Google Scholar 

  11. Huang R, Liu Z, Yuan S, Yin H, Dang Z, Wu P (2017) Worldwide human daily intakes of bisphenol A (BPA) estimated from global urinary concentration data (2000-2016) and its risk analysis. Environ Pollut 230:143–152

    Article  CAS  PubMed  Google Scholar 

  12. Chin KY, Pang KL, Mark-Lee WF (2018) A review on the effects of bisphenol A and its derivatives on skeletal health. Int J Med Sci 15(10):1043–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vigui C, Mhaouty-Kodja S, Habert R, Chevrier C, Michel C, Pasquier E (2018) Evidence-based adverse outcome pathway approach for the identification of BPA as en endocrine disruptor in relation to its effect on the estrous cycle. Mol Cell Endocrinol 475:10–28

    Article  CAS  Google Scholar 

  14. Beausoleil C, Emond C, Cravedi JP, Antignac JP, Applanat M, Appenzeller BR, Beaudouin R, Belzunces LP, Canivenc-Lavier MC, Chevalier N, Chevrier C, Elefant E, Eustache F, Habert R, Kolf-Clauw M, Magueresse-Battistoni BL, Mhaouty-Kodja S, Minier C, Multigner L, Schroeder H, Thonneau P, Viguie C, Pouzaud F, Ormsby JN, Rousselle C, Verines-Jouin L, Pasquier E, Michel C (2018) Regulatory identification of BPA as an endocrine disruptor: context and methodology. Mol Cell Endocrinol 475:4–9

    Article  CAS  PubMed  Google Scholar 

  15. Muñoz-de-Toro M, Markey CM, Wadia PR, Luque EH, Rubin BS, Sonnenschein C, Soto AM (2005) Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology 146(9):4138–4147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Háková M, Chocholou L, Havlíková S, Chvojka J, Solich P, Šatínský D (2018) An on-line coupling of nanofibrous extraction with column-switching high-performance liquid chromatography – a case study on the determination of bisphenol A in environmental water samples. Talanta 178:141–146

    Article  CAS  PubMed  Google Scholar 

  17. Cunha SC, Pena A, Fernandes JO (2015) Dispersive liquid–liquid microextraction followed by microwave-assisted silylation and gas chromatography-mass spectrometry analysis for simultaneous trace quantification of bisphenol A and 13 ultraviolet filters in wastewaters. J Chromatogr A 1414:10–21

    Article  CAS  PubMed  Google Scholar 

  18. Tian L, Lin L, Bayen S (2019) Optimization of the post-acquisition data processing for the non-targeted screening of trace leachable residues from reusable plastic bottles by high performance liquid chromatography coupled to hybrid quadrupole time of flight mass spectrometry. Talanta 193:70–76

    Article  CAS  PubMed  Google Scholar 

  19. Maiolini E, Ferri E, Pitasi AL, Montoya A, Di Giovanni M, Errani E, Girotti S (2014) Bisphenol A determination in baby bottles by chemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassay and liquid chromatography tandem mass spectrometry. Analyst 139(1):318–324

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Kuang D, Feng Y, Zhang F, Liu M (2011) Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 172(3-4):379–386

    Article  CAS  Google Scholar 

  21. Kannan PK, Hu C, Morgan H, Moshkalev SA, Rout CS (2016) Electrochemical sensing of bisphenol using a multilayer graphene nanobelt modified photolithography patterned platinum electrode. Nanotechnology 27(37):375504

    Article  CAS  PubMed  Google Scholar 

  22. Dong X, Qi X, Liu N, Yang Y, Piao Y (2017) Direct electrochemical detection of bisphenol A using a highly conductive graphite nanoparticle film electrode. Sensors 17(4):836–846

    Article  CAS  Google Scholar 

  23. Manikandan VS, BalRam Adhikari B, Chen A (2018) Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 143(19):4537–4554

    Article  CAS  PubMed  Google Scholar 

  24. Zhao WR, Kang TF, Lu LP, Shen FX, Cheng SY (2017) A novel electrochemical sensor based on gold nanoparticles and molecularly imprinted polymer with binary functional monomers for sensitive detection of bisphenol A. J Electroanal Chem 786:102–111

    Article  CAS  Google Scholar 

  25. Wang A, Wei Y, Wang C (2015) Study on the Electrocatalytic oxidation of bisphenol A on au nanoparticles/carbon nanotubes composite modified electrode. J Anal Chem 70(1):67–71

    Article  CAS  Google Scholar 

  26. Mita DG, Attanasio A, Arduini F, Diano N, Grano V, Bencivenga U, Rossi S, Amine A, Moscone D (2007) Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers. Biosens Bioelectron 23(1):60–65

    Article  CAS  PubMed  Google Scholar 

  27. Alkasir RSJ, Ganesana M, Won YH, Stanciu L, Andreescu S (2010) Enzyme functionalized nanoparticles for electrochemical biosensors: a comparative study with applications for the detection of bisphenol A. Biosens Bioelectron 26(1):43–49

    Article  CAS  PubMed  Google Scholar 

  28. Yin H, Zhou Y, Xu J, Ai S, Cui L, Zhu L (2010) Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Anal Chim Acta 659(1-2):144–150

    Article  CAS  PubMed  Google Scholar 

  29. Kochana J, Wapiennik K, Kozak J, Knihnicki P, Pollap A, Woźniakiewicz M, Nowak J, Kościelniak P (2015) Tyrosinase-based biosensor for determination of bisphenol A in a flow-batch system. Talanta 144:163–170

    Article  CAS  PubMed  Google Scholar 

  30. Lin TH, Lin CW, Liu HH, Sheu JT, Hung WH (2011) Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chem Commun 47(7):2044–2046

    Article  CAS  Google Scholar 

  31. Ye W, Yan J, Ye Q, Zhou F (2010) Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: growth and their multiple applications. J Phys Chem C 114(37):15617–15624

    Article  CAS  Google Scholar 

  32. Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 321:353–376

    Article  Google Scholar 

  33. Wang J (2000) Analytical electrochemistry. Wiley-VCH, 2nd Ed., New York

  34. Li L, Wang Q, Zhang Y, Niu Y, Yao X, Liu H (2015) The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD) simulations. PLoS One 0(3):e0120330

    Article  CAS  Google Scholar 

  35. Hashimoto S, Shiomoto K, Okada K, Imaoka S (2012) The binding site of bisphenol A to protein disulphide isomerase. J Biochem 151(1):35–45

    Article  CAS  PubMed  Google Scholar 

  36. Lawrywianiec M, Smajdor J, Paczosa-Bator B, Piech R (2017) High sensitive method for determination of the toxic bisphenol A in food/beverage packaging and thermal paper using glassy carbon electrode modified with carbon black nanoparticles. Food Anal Methods 10(12):3825–3835

    Article  Google Scholar 

Download references

Acknowledgments

The authors thanks to INCTBio, PPGQ and Propesq/UFRGS. Also, to the Center of Electron Microscopy-CME/UFRGS and CNANO/UFRGS for the facilities used for the research. Filomeno thanks to CNPQ for his Ph.D. scholarship and Manoelly O. Rocha to CAPES for her MD Scholarship.

Funding

The authors received financial support from INCTBio (CNPq/INCT 465389/2014-7), CNPQ (Process: 550441/2012-3), CNPQ (Process: 190365/2014-5), Calouste Gulbenkian Foundation. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Arguello.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inroga, F.A.D., Rocha, M.O., Lavayen, V. et al. Development of a tyrosinase-based biosensor for bisphenol A detection using gold leaf–like microstructures. J Solid State Electrochem 23, 1659–1666 (2019). https://doi.org/10.1007/s10008-019-04252-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04252-2

Keywords

Navigation