Skip to main content
Log in

Short communication: a simple nanoparticle-based TiO2 memristor device and the role of defect chemistry in its operation

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 26 June 2019

This article has been updated

Abstract

A simple metal-semiconductor-metal device comprising TiO2 cast from a suspension of Degussa P25 and placed between two metal plates (Al/Al lap shears) demonstrated memristive-like resistive switching behaviour. A mechanism is proposed which relies upon the formation of p and n-type regions within the P25 semiconductor material ultimately leading to the formation of a p-n junction. This device also exhibited enhanced steady state currents upon the imposition of potential steps, most notably at higher potential magnitudes (both anodic and cathodic), indicating lack of ionic conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 26 June 2019

    The original version of this article contained a mistake.

References

  1. Ye C, Wu J, He G, Zhang J, Deng T, He P, Wang H (2016) Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory: A Review. J Mat Sci Tech 32:1–11

    Article  CAS  Google Scholar 

  2. Pan F, Gao S, Chen C, Song C, Zeng F (2014) Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater Sci Eng R 83:1–59

    Article  Google Scholar 

  3. Gale E (2014) TiO2-based memristors and ReRAM: materials, mechanisms and models (a review). Semicond Sci Tech 29:104004–104014

    Article  CAS  Google Scholar 

  4. Yoo J, Lee K, Tighineanu A, Schmuki P (2013) Highly ordered TiO2 nanotube-stumps with memristive response. Electrochem Comms 34:177–180

    Article  CAS  Google Scholar 

  5. Gao P, Wang Z, Fu W, Liao Z, Liu K, Wang K, Bai X, Wang E (2010) In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron 41:301–305

    Article  CAS  PubMed  Google Scholar 

  6. Cassidy JF, Fox D, Betts AJ (2016) A Model for the Voltammetric Behaviour of TiO2 Memristors. J Solid State Electrochem 20:1229–1234

    Article  CAS  Google Scholar 

  7. Shoute LCT, Pekas N, Wu Y, McCreery RL (2011) Redox driven conductance changes for resistive memory. Appl Phys A Mater Sci Process 102:841–849

    Article  CAS  Google Scholar 

  8. Senthilkumar V, Kathalingam A, Kannan V, Rhee JK (2012) Observation of multi-conductance state in solution processed Al/a-TiO2/ITO memory device. Microelectronic Eng 98:97–100

    Article  CAS  Google Scholar 

  9. Szot K, Speier W, Bihlmayer G, Waser R (2006) Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 5:312–320

    Article  CAS  PubMed  Google Scholar 

  10. Salaoru I, Prodromakis T, Khiat A, Toumazou C (2013) Resistive switching of oxygen enhanced TiO2 thin-film devices. Appl Phys Lett 102:13506–13509

    Article  CAS  Google Scholar 

  11. Kalaev D, Yalon E, Reiss I (2015) On the direction of the conductive filament growth in valence change memory devices during electroforming. Solid State Ionics 276:9–17

    Article  CAS  Google Scholar 

  12. Gale E, Mayne R, Adamatzky A, Costello BL (2014) Drop-coated titanium dioxide memristors. Mater Chem Phys 143:524–529

    Article  CAS  Google Scholar 

  13. Gale E, Pearson D, Kitson S, Adamatzky A, Costello BL (2015) The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Mater Chem Phys 162:20–30

    Article  CAS  Google Scholar 

  14. Jeong HY, Lee JY, Choi SY, Kim JW (2009) Effects of the oxygen vacancy concentration in InGaZnO-based resistance random access memory. Appl Phys Lett 95:162108–116211

    Article  CAS  Google Scholar 

  15. Yang JJ, Miao F, Pickett MD, Ohlberg DAA, Stewart DR, Lau CN, Williams RS (2009) The mechanism of electroforming of metal oxide memristive switches. Nanotech 20:215201–215205

    Article  CAS  Google Scholar 

  16. Jeong HY, Lee JY, Choi SY, Kim JW (2009) Microscopic origin of bipolar resistive switching of nanoscale titanium oxide films. Appl Phys Lett 95(16):162108–116211

    Article  CAS  Google Scholar 

  17. Yang JJ, Miao F, Pickett MD, Ohlberg DAA, Stewart DR, Lau CN, Williams RS (2009) The mechanism of electroforming of metal oxide memristive switches. Nanotech 20(21):215201–215205

    Article  CAS  Google Scholar 

  18. Bunker BC, Nelson GC, Zavadil KR, Barbour JC, Wall FD, Sullivan JP, Engelhardt MH, Baer DR (2002) Hydration of Passive Oxide Films on Aluminum. J Phys Chem 106(18):4705–4713

    Article  CAS  Google Scholar 

  19. Nowotny MK, Sheppard LR, Bak T, Nowotny J (2008) Defect Chemistry of Titanium Application of defect Engineering in Processing of TiO2-Based photocatalysts. J Phys Chem C 112(14):5275–5300

    Article  CAS  Google Scholar 

  20. Bak T, Nowotny J, Sucher NJ, Wachsman E (2011) Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (rutile) with oxygen, water, and bacteria. J Phys Chem C 115(32):15711–15738

    Article  CAS  Google Scholar 

  21. Lee S, White HS (2004) Dissolution of the Native Oxide Film on Polycrystalline and Single-Crystal Aluminum in NaCl Solutions. J Electrochem Soc 151(8):B479–B483

    Article  CAS  Google Scholar 

  22. McCafferty E (2003) Semiconductor aspects of the passive oxide film on aluminum as modified by surface alloying. Corros Sci 45(2):301–308

    Article  Google Scholar 

  23. Teixeira S, Martins PM, Lanceros-Méndez S, Kühn K, Cuniberti G (2016) Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-cotrifluoroethylene. Appl Surf Sci 384:497–504

    Article  CAS  Google Scholar 

  24. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A Chem 216(2-3):179–182

    Article  CAS  Google Scholar 

  25. Boehm HP, Kolloid ZZ (1966) Chemical Identification of Surface Groups. Adv Catal 16:179–274

    CAS  Google Scholar 

  26. Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6(11):833–840

    Article  CAS  PubMed  Google Scholar 

  27. Dash CS, Sahoo S, Prabaharan S (2018) Resistive switching and impedance characteristics of M/TiO2−x/TiO2/M nano-ionic memristor. Solid State Ionics 324:218–225

    Article  CAS  Google Scholar 

  28. Nowotny MK, Bogdanoff P, Dittrich T, Fiechter S, Fujishima A, Tributsch H (2010) Observations of p-type semiconductivity in titanium dioxide at room temperature. Mater Lett 64(8):928–930

    Article  CAS  Google Scholar 

  29. Duraisamy N, Muhammad NM, Kim HC, Jo JD, Choi KH (2012) Fabrication of TiO2 thin film memristor device using electrohydrodynamic inkjet printing. Thin Solid Films 520(15):5070–5074

    Article  CAS  Google Scholar 

  30. Lien DH, Kao ZH, Huang TH, Liao YC, Lee SC, He JH (2014) All-Printed Paper Memory. ACS Nano 8(8):7613–7619

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the award of a DIT Fiosraigh Dean of Graduate Studies award to R de Carvalho and COST Action MP1407 (e-MINDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaela C. de Carvalho.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, R.C., Betts, A.J. & Cassidy, J.F. Short communication: a simple nanoparticle-based TiO2 memristor device and the role of defect chemistry in its operation. J Solid State Electrochem 23, 1939–1943 (2019). https://doi.org/10.1007/s10008-019-04239-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04239-z

Keywords

Navigation