Advertisement

Short communication: a simple nanoparticle-based TiO2 memristor device and the role of defect chemistry in its operation

  • Rafaela C. de CarvalhoEmail author
  • Anthony J. Betts
  • John F. Cassidy
Short Communication
  • 57 Downloads

Abstract

A simple metal-semiconductor-metal device comprising TiO2 cast from a suspension of Degussa P25 and placed between two metal plates (Al/Al lap shears) demonstrated memristive-like resistive switching behaviour. A mechanism is proposed which relies upon the formation of p and n-type regions within the P25 semiconductor material ultimately leading to the formation of a p-n junction. This device also exhibited enhanced steady state currents upon the imposition of potential steps, most notably at higher potential magnitudes (both anodic and cathodic), indicating lack of ionic conduction.

Keywords

TiO2 Degussa P25 Memristor Nanoparticles Point defects 

Notes

Acknowledgements

The authors gratefully acknowledge the award of a DIT Fiosraigh Dean of Graduate Studies award to R de Carvalho and COST Action MP1407 (e-MINDS).

References

  1. 1.
    Ye C, Wu J, He G, Zhang J, Deng T, He P, Wang H (2016) Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory: A Review. J Mat Sci Tech 32:1–11CrossRefGoogle Scholar
  2. 2.
    Pan F, Gao S, Chen C, Song C, Zeng F (2014) Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater Sci Eng R 83:1–59CrossRefGoogle Scholar
  3. 3.
    Gale E (2014) TiO2-based memristors and ReRAM: materials, mechanisms and models (a review). Semicond Sci Tech 29:104004–104014CrossRefGoogle Scholar
  4. 4.
    Yoo J, Lee K, Tighineanu A, Schmuki P (2013) Highly ordered TiO2 nanotube-stumps with memristive response. Electrochem Comms 34:177–180CrossRefGoogle Scholar
  5. 5.
    Gao P, Wang Z, Fu W, Liao Z, Liu K, Wang K, Bai X, Wang E (2010) In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron 41:301–305CrossRefGoogle Scholar
  6. 6.
    Cassidy JF, Fox D, Betts AJ (2016) A Model for the Voltammetric Behaviour of TiO2 Memristors. J Solid State Electrochem 20:1229–1234CrossRefGoogle Scholar
  7. 7.
    Shoute LCT, Pekas N, Wu Y, McCreery RL (2011) Redox driven conductance changes for resistive memory. Appl Phys A Mater Sci Process 102:841–849CrossRefGoogle Scholar
  8. 8.
    Senthilkumar V, Kathalingam A, Kannan V, Rhee JK (2012) Observation of multi-conductance state in solution processed Al/a-TiO2/ITO memory device. Microelectronic Eng 98:97–100CrossRefGoogle Scholar
  9. 9.
    Szot K, Speier W, Bihlmayer G, Waser R (2006) Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 5:312–320CrossRefGoogle Scholar
  10. 10.
    Salaoru I, Prodromakis T, Khiat A, Toumazou C (2013) Resistive switching of oxygen enhanced TiO2 thin-film devices. Appl Phys Lett 102:13506–13509CrossRefGoogle Scholar
  11. 11.
    Kalaev D, Yalon E, Reiss I (2015) On the direction of the conductive filament growth in valence change memory devices during electroforming. Solid State Ionics 276:9–17CrossRefGoogle Scholar
  12. 12.
    Gale E, Mayne R, Adamatzky A, Costello BL (2014) Drop-coated titanium dioxide memristors. Mater Chem Phys 143:524–529CrossRefGoogle Scholar
  13. 13.
    Gale E, Pearson D, Kitson S, Adamatzky A, Costello BL (2015) The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Mater Chem Phys 162:20–30CrossRefGoogle Scholar
  14. 14.
    Jeong HY, Lee JY, Choi SY, Kim JW (2009) Effects of the oxygen vacancy concentration in InGaZnO-based resistance random access memory. Appl Phys Lett 95:162108–116211CrossRefGoogle Scholar
  15. 15.
    Yang JJ, Miao F, Pickett MD, Ohlberg DAA, Stewart DR, Lau CN, Williams RS (2009) The mechanism of electroforming of metal oxide memristive switches. Nanotech 20:215201–215205CrossRefGoogle Scholar
  16. 16.
    Jeong HY, Lee JY, Choi SY, Kim JW (2009) Microscopic origin of bipolar resistive switching of nanoscale titanium oxide films. Appl Phys Lett 95(16):162108–116211CrossRefGoogle Scholar
  17. 17.
    Yang JJ, Miao F, Pickett MD, Ohlberg DAA, Stewart DR, Lau CN, Williams RS (2009) The mechanism of electroforming of metal oxide memristive switches. Nanotech 20(21):215201–215205CrossRefGoogle Scholar
  18. 18.
    Bunker BC, Nelson GC, Zavadil KR, Barbour JC, Wall FD, Sullivan JP, Engelhardt MH, Baer DR (2002) Hydration of Passive Oxide Films on Aluminum. J Phys Chem 106(18):4705–4713CrossRefGoogle Scholar
  19. 19.
    Nowotny MK, Sheppard LR, Bak T, Nowotny J (2008) Defect Chemistry of Titanium Application of defect Engineering in Processing of TiO2-Based photocatalysts. J Phys Chem C 112(14):5275–5300CrossRefGoogle Scholar
  20. 20.
    Bak T, Nowotny J, Sucher NJ, Wachsman E (2011) Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (rutile) with oxygen, water, and bacteria. J Phys Chem C 115(32):15711–15738CrossRefGoogle Scholar
  21. 21.
    Lee S, White HS (2004) Dissolution of the Native Oxide Film on Polycrystalline and Single-Crystal Aluminum in NaCl Solutions. J Electrochem Soc 151(8):B479–B483CrossRefGoogle Scholar
  22. 22.
    McCafferty E (2003) Semiconductor aspects of the passive oxide film on aluminum as modified by surface alloying. Corros Sci 45(2):301–308CrossRefGoogle Scholar
  23. 23.
    Teixeira S, Martins PM, Lanceros-Méndez S, Kühn K, Cuniberti G (2016) Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-cotrifluoroethylene. Appl Surf Sci 384:497–504CrossRefGoogle Scholar
  24. 24.
    Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A Chem 216(2-3):179–182CrossRefGoogle Scholar
  25. 25.
    Boehm HP, Kolloid ZZ (1966) Chemical Identification of Surface Groups. Adv Catal 16:179–274Google Scholar
  26. 26.
    Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6(11):833–840CrossRefGoogle Scholar
  27. 27.
    Dash CS, Sahoo S, Prabaharan S (2018) Resistive switching and impedance characteristics of M/TiO2−x/TiO2/M nano-ionic memristor. Solid State Ionics 324:218–225CrossRefGoogle Scholar
  28. 28.
    Nowotny MK, Bogdanoff P, Dittrich T, Fiechter S, Fujishima A, Tributsch H (2010) Observations of p-type semiconductivity in titanium dioxide at room temperature. Mater Lett 64(8):928–930CrossRefGoogle Scholar
  29. 29.
    Duraisamy N, Muhammad NM, Kim HC, Jo JD, Choi KH (2012) Fabrication of TiO2 thin film memristor device using electrohydrodynamic inkjet printing. Thin Solid Films 520(15):5070–5074CrossRefGoogle Scholar
  30. 30.
    Lien DH, Kao ZH, Huang TH, Liao YC, Lee SC, He JH (2014) All-Printed Paper Memory. ACS Nano 8(8):7613–7619CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rafaela C. de Carvalho
    • 1
    Email author
  • Anthony J. Betts
    • 1
  • John F. Cassidy
    • 1
    • 2
  1. 1.Applied Electrochemistry Group, FOCAS Research InstituteTechnological University Dublin, City CampusDublinIreland
  2. 2.School of Chemical and Pharmaceutical SciencesTechnological University Dublin, City CampusDublinIreland

Personalised recommendations