Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1221–1235 | Cite as

Process of electrochemical electrode modification by polyaniline in the frame of percolation model

  • R. R. Nigmatullin
  • H. C. Budnikov
  • A. G. Mustafin
  • A. V. Sidelnikov
  • A. N. AndriianovaEmail author
  • A. R. Shigapova
Original Paper
  • 57 Downloads

Abstract

Polyaniline (PANI) represents itself a class of polymers having ionic and electronic conductivities. The polymer has wide application as chemical modifier of electrodes for voltammetry. Electrochemical polymerization of aniline includes in itself some oxidation/reduction stages of electroactive groups. In the result of this process, polyaniline structures of different contents are formed. The qualitative and quantitative contents of polymer film and its area and morphology during the polymerization process play an important role in electroconductivity and response of the final synthesis product on analyte. We demonstrate a possibility of quantitative description of the polyaniline electrochemical polymerization process in the frame of percolation model covering wide temporal range (100–500 reduction/oxidation cycles). We can evaluate the basic parameters (number of percolation channels and fractal dimensions with respect to the applied potential) characterizing the quality of electrode polymer cover. The microphotos obtained with the help of the high-resolution scanning electron microscope support the obtained results independently.

Abbreviations

DEL

Double electric layer

DLA

Diffusion-limited aggregation

SEM

Scanning electron microscope.

FD

Fractal dimension

FLSM

Functional linear square method

IM

Intermediate model

LLSM

Linear least square method

PANI

Polyaniline

PM

Percolation model

VAG(s)

Voltammogram(s)

Notes

Funding

This work was supported by the Russian Foundation Basic Research Project № 17-43-020232 r-Povolzh’ye-а.

References

  1. 1.
    Budnikov H, Shirokova V (2013) Term “nano” in electroanalysis: a trendy prefix or a new stage of its development? J Anal Chem 68(8):663–670CrossRefGoogle Scholar
  2. 2.
    Nigmatullin R, Budnikov H, Sidelnikov A (2018) Mesoscopic theory of percolation currents associated with quantitative description of VAGs: confirmation on real data. Chaos, Solitons Fractals 106:171–183CrossRefGoogle Scholar
  3. 3.
    Diab N, AbuZuhri A, Schuhmann W (2003) Sequential-injection stripping analysis of nifuroxime using DNA-modified glassy carbon electrodes. Bioelectrochemistry 61(1-2):57–63CrossRefGoogle Scholar
  4. 4.
    Moss R, Pérez-Roa R, Anderson M (2013) Electrochemical response of titania, zirconia, and alumina electrodes to phosphate adsorption. Electrochim Acta 104:314–321CrossRefGoogle Scholar
  5. 5.
    Battistel D, Daniele S (2013) Determination of trace bismuth by under-potential deposition-stripping voltammetry at mesoporous platinum microelectrodes: application to pharmaceutical products. J Solid State Electrochem 17(6):1509–1516CrossRefGoogle Scholar
  6. 6.
    Wang J, Kawde A (2001) Pencil-based renewable biosensor for label-free electrochemical detection of DNA hybridization. Anal Chim Acta 431(2):219–224CrossRefGoogle Scholar
  7. 7.
    Biallozor S, Kupniewska A (2005) Conducting polymers electrodeposited on active metals. Synth Met 155(3):443–449CrossRefGoogle Scholar
  8. 8.
    Mu S, Yang Y (2008) Spectral characteristics of polyaniline nanostructures synthesized by using cyclic voltammetry at different scan rates. J Phys Chem B 112(37):11558–11563CrossRefGoogle Scholar
  9. 9.
    Gvozdenović M, Jugović B, Stevanović J, Grgur B (2014) Electrochemical synthesis of electroconducting polymers. Hem Ind 68(6):673–684CrossRefGoogle Scholar
  10. 10.
    Nigmatullin R, Sidelnikov A, Budnikov H, Maksyutova E (2018) Description of complex fluids electrochemical data in the frame of percolation model. Electroanal 30(9):2053–2065CrossRefGoogle Scholar
  11. 11.
    Abrantes LM, Correia JP, Savic M, Jin G (2001) Structural modifications during conducting polymer formation—an ellipsometric study. Electrochim Acta 46(20-21):3181–3187CrossRefGoogle Scholar
  12. 12.
    Rego LS, Antonio JL, Silva CH, Nobrega MM, Temperini ML, Torresi RM, de Torresi SIC (2016) Electrochemical template synthesis of adherent polyaniline thin films with tubular structure. J Solid State Electrochem 20(4):983–991CrossRefGoogle Scholar
  13. 13.
    Wang J, Zhang K, Xu H, Yan B, Gao F, Shi Y, Du Y (2018) Engineered photoelectrochemical platform for the ultrasensitive detection of caffeic acid based on flower-like MoS2 and PANI nanotubes nanohybrid. Sensors Actuators B Chem 276:322–330CrossRefGoogle Scholar
  14. 14.
    Liu X, Shang P, Zhang Y, Wang X, Fan Z, Wang B, Zheng Y (2014) Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes. J Mater Chem A 2(37):15273–15278CrossRefGoogle Scholar
  15. 15.
    Liu X, Zheng Y, Wang X (2015) Controllable preparation of polyaniline–graphene nanocomposites using functionalized graphene for supercapacitor electrodes. Chem Eur J 21(29):10408–10415CrossRefGoogle Scholar
  16. 16.
    Skotheim TA, Reynolds J (2006) Conjugated polymers: theory, synthesis, properties, and characterization. CRC Press, Boca RatonCrossRefGoogle Scholar
  17. 17.
    Inzelt G (2012) Conducting polymers: a new era in electrochemistry. In: Scholz F (ed) Monographs in electrochemistry, 2nd edn. Springer, BerlinGoogle Scholar
  18. 18.
    Wallace G, Spinks G, Kane-Maguire L, Teasdale P (2009) Conductive electroactive polymers: intelligent polymer systems. CRC press, Boca RatonGoogle Scholar
  19. 19.
    Zotti G, Cattarin S, Comisso N (1987) Electrodeposition of polythiophene, polypyrrole and polyaniline by the cyclic potential sweep method. J Electroanal Chem 235(1-2):259–273CrossRefGoogle Scholar
  20. 20.
    Hussain A, Kumar A (2003) Electrochemical synthesis and characterization of chloride doped polyaniline. Bull Mater Sci 26(3):329–334CrossRefGoogle Scholar
  21. 21.
    Mohammad F (2001) Handbook of advanced electronic and photonic materials and devices. Academic Press, CambridgeGoogle Scholar
  22. 22.
    Pud A (1994) Stability and degradation of conducting polymers in electrochemical systems. Synth Met 66(1):1–18CrossRefGoogle Scholar
  23. 23.
    Tarasevich M, Orlov S, Shkolnikov E (1990) Electrochemistry of polymers. Science, MoscowGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Radioelectronics and Informative-Measurements Technics DepartmentKazan National Research Technical University-KAIKazanRussia
  2. 2.Institute of ChemistryKazan Federal UniversityKazanRussia
  3. 3.Chemistry DepartmentBashkir State UniversityUfaRussia
  4. 4.Technology DepartmentUfa State Petroleum Technological UniversityUfaRussia

Personalised recommendations