Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1155–1164 | Cite as

Influence of current collecting and functional layer thickness on the performance stability of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Sm0.2O1.9 composite cathode

  • S. A. Muhammed Ali
  • Mustafa Anwar
  • Lily Siong Mahmud
  • Noor Shieela Kalib
  • Andanastuti MuchtarEmail author
  • Mahendra Rao Somalu
Original Paper


The effect of current collecting layer (CCL) and cathode functional layer (CFL) thicknesses on the catalytic activity of the La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Sm0.2O1.9 (LSCF-SDC) composite cathode was investigated by electrochemical impedance spectroscopy at 600 °C for 100 h. Results revealed that the charge transfer process associated with the incorporation of O2− ions and the surface oxygen reduction reaction rate are dependent on CFL and CCL thicknesses, respectively. Area-specific resistance is dependent on CCL thickness in high-frequency arcs and on CFL thickness in low-frequency arcs. No significant change was observed in area-specific resistance value as the thickness of LSCF CCL decreased (25–5 μm) while the LSCF-SDC CFL thickness (5-25 μm) was gradually increased. However, the LSCF-SDC composite cathode (without CCL) showed poor catalytic activity toward the oxygen reduction reaction and had a high area-specific resistance value (3.31 Ω cm2). When LSCF CCL (5 μm) was used, the area-specific resistance value decreased by 16 times relative to the ASR of a sample without CCL. The field emission scanning electron microscopy results indicated that these cathodes exhibited a clear change in microstructure on the surface of the LSCF CCL after 100 h of thermal treatment in oxygen. The particle agglomeration and Sr surface segregation affected the surface catalytic activity toward oxygen reduction reaction at the LSCF CCL. As a result, the ASR value increased gradually in 100 h thermal treatment.

Graphical abstract


Solid oxide fuel cell Composite cathode Thickness Current collector Stability 



The authors would like to extend their gratitude to the Center for Research and Instrumentation Management of Universiti Kebangsaan Malaysia (The National University of Malaysia) for excellent testing equipment.


This work was supported by the Universiti Kebangsaan Malaysia (UKM) and Ministry of Education (MOE), Malaysia, through the research sponsorship of GUP-2016-045 and FRGS/1/2018/TK10/UKM/01/1.


  1. 1.
    Mahmud LS, Muchtar A, Somalu MR (2017) Challenges in fabricating planar solid oxide fuel cells: A review. Renew Sust Energ Rev 72:105–116CrossRefGoogle Scholar
  2. 2.
    Mah JCW, Muchtar A, Somalu MR, Ghazali MJ (2017) Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques. Int J Hydrog Energy 42(14):9219–9229CrossRefGoogle Scholar
  3. 3.
    Malavasi L, Fisher CAJ, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 39(11):4370–4387CrossRefPubMedGoogle Scholar
  4. 4.
    Anwar M, Muhammed Ali SA, Abdalla A et al (2017) Effect of sintering temperature on the microstructure and ionic conductivity of Ce0.8Sm0.1Ba0.1O2-δ electrolyte. Process Appl Ceram 11(1):67–74CrossRefGoogle Scholar
  5. 5.
    Hussain AM, Pan K-J, Robinson IA, Hays T, Wachsman ED (2016) Stannate-based ceramic oxide as anode materials for oxide-ion conducting low-temperature solid oxide fuel cells. J Electrochem Soc 163(10):F1198–F1205CrossRefGoogle Scholar
  6. 6.
    Tarancón A (2009) Strategies for lowering solid oxide fuel cells operating temperature. Energies 2(4):1130–1150CrossRefGoogle Scholar
  7. 7.
    Irshad M, Siraj K, Raza R, Ali A, Tiwari P, Zhu B, Rafique A, Ali A, Kaleem Ullah M, Usman A (2016) A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Appl Sci 6(3):75CrossRefGoogle Scholar
  8. 8.
    Fabbri E, Bi L, Pergolesi D, Traversa E (2011) High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy Environ Sci 4(12):4984CrossRefGoogle Scholar
  9. 9.
    Cavallaro A, Pramana SS, Ruiz-Trejo E et al (2018) Amorphous-cathode-route towards low temperature SOFC. Sustain Energy Fuels 00:1–14Google Scholar
  10. 10.
    Wong WY, Daud WRW (2015) Density functional theory study of oxygen reduction mechanism at nitrogen-doped carbon nanotubes for fuel cell applications. J Eng Sci Technol 10:68–77Google Scholar
  11. 11.
    Guo S, Wu H, Puleo F, Liotta L (2015) B-site metal (Pd, Pt, Ag, Cu, Zn, Ni) promoted La1−xSrxCo1−yFeyO3–δ perovskite oxides as cathodes for IT-SOFCs. Catalysts 5(1):366–391CrossRefGoogle Scholar
  12. 12.
    Da H, Liu X, Zeng F et al (2012) A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Sci Rep 2:462CrossRefGoogle Scholar
  13. 13.
    Gauckler LJ, Beckel D, Buergler BE, Jud E, Muecke UP, Prestat M, Rupp JLM, Richter J (2004) Solid oxide fuel cells: systems and materials. Chim Int J Chem 58(12):837–850CrossRefGoogle Scholar
  14. 14.
    de Larramendi IR, Ortiz-Vitoriano N, Dzul-Bautista IB, Rojo T (2016) Designing perovskite oxides for solid oxide fuel cells. In: Pan L, Zhu G (eds) Perovskite materials—synthesis, characterisation, properties, and applications. InTech, London, pp 589–617Google Scholar
  15. 15.
    Almar L, Szász J, Weber A, Ivers-Tiffée E (2017) Oxygen transport kinetics of mixed ionic-electronic conductors by coupling focused ion beam tomography and electrochemical impedance spectroscopy. J Electrochem Soc 164(4):F289–F297CrossRefGoogle Scholar
  16. 16.
    Sun C, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14(7):1125–1144CrossRefGoogle Scholar
  17. 17.
    Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics 138(1-2):79–90CrossRefGoogle Scholar
  18. 18.
    Laurencin J, Hubert M, Couturier K, Bihan TL, Cloetens P, Lefebvre-Joud F, Siebert E (2015) Reactive mechanisms of LSCF single-phase and LSCF-CGO composite electrodes operated in anodic and cathodic polarisations. Electrochim Acta 174:1299–1316CrossRefGoogle Scholar
  19. 19.
    Liu M, Liu M, Ding D et al (2012) Enhanced performance of LSCF cathode through surface modification. Int J Hydrog Energy 37(10):8613–8620CrossRefGoogle Scholar
  20. 20.
    Xu Q, Huang DP, Zhang F et al (2008) Structure, electrical conducting and thermal expansion properties of La0.6Sr0.4Co0.8Fe0.2O3-δ-Ce0.8Sm0.2O2-δ composite cathodes. J Alloys Compd 454(1-2):460–465CrossRefGoogle Scholar
  21. 21.
    Çelikbilek Ӧzden SE, Jauffrès D et al (2017) Influence of sintering temperature on morphology and electrochemical performance of LSCF/GDC composite films as efficient cathode for SOFC. Electrochim Acta 246:1248–1258CrossRefGoogle Scholar
  22. 22.
    Chen M, Moon BH, Kim SH et al (2012) Characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ + La2NiO4+δ composite cathode materials for solid oxide fuel cells. Fuel Cells 12:86–96CrossRefGoogle Scholar
  23. 23.
    Sar J, Dessemond L, Djurado E (2016) Electrochemical properties of graded and homogeneous Ce0.9Gd0.1O2−δ–La0.6Sr0.4Co0.2Fe0.8O3−δ composite electrodes for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy 41(38):17037–17043CrossRefGoogle Scholar
  24. 24.
    Tao Y, Nishino H, Ashidate S, Kokubo H, Watanabe M, Uchida H (2009) Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs. Electrochim Acta 54(12):3309–3315CrossRefGoogle Scholar
  25. 25.
    Fernandes A de PL, Garcia EM, de Almeida RM et al (2016) Influence of cathode functional layer composition on electrochemical performance of solid oxide fuel cells. J Solid State Electrochem 20(9):2575–2580CrossRefGoogle Scholar
  26. 26.
    Steele B (1998) Properties of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes II. Role of oxygen exchange and diffusion. Solid State Ionics 106(3-4):255–261CrossRefGoogle Scholar
  27. 27.
    Bae J (1998) Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes I. Role of SiO2. Solid State Ionics 106(3-4):247–253CrossRefGoogle Scholar
  28. 28.
    Muhammed Ali SA, Anwar M, Ashikin N, Muchtar A, Somalu MR (2018) Influence of oxygen ion enrichment on optical, mechanical, and electrical properties of LSCF perovskite nanocomposite. Ceram Int 44(9):10433–10442CrossRefGoogle Scholar
  29. 29.
    Muhammed Ali SA, Anwar M, Baharuddin NA, Somalu MR, Muchtar A (2018) Enhanced electrochemical performance of LSCF cathode through selection of optimum fabrication parameters. J Solid State Electrochem 22(1):263–273CrossRefGoogle Scholar
  30. 30.
    Rahmoun K, Faraoun HI, Bassou G, Mathieu C, Sari NEC (2014) Determination of mechanical properties of porous silicon with image analysis and finite element. Phys Procedia 55:390–395CrossRefGoogle Scholar
  31. 31.
    MR C’a, MacEdo DA, Martinelli AE et al (2012) Synthesis, structure and electrochemical performance of cobaltite-based composite cathodes for IT-SOFC. Cryst Res Technol 47:723–730CrossRefGoogle Scholar
  32. 32.
    Xiao G, Liu Q, Zhao F, Zhang L, Xia C, Chen F (2011) Sr2Fe1.5Mo0.5O6 as cathodes for intermediate- temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte. J Electrochem Soc 158(5):B455–B460CrossRefGoogle Scholar
  33. 33.
    Baek S-W, Bae J, Kim JH (2008) Oxygen reduction mechanism at Sm0.5Sr0.5CoO3-δ/Sm0.2Ce0.8O1.9 composite cathode for solid oxide fuel cell. In: Proceedings of FUELCELL2008, 6th International Conference on Fuel Cell Science, Engineering and Technology. ASME, Denver, Colorado, pp 1–4Google Scholar
  34. 34.
    Burnwal SK, Bharadwaj S, Kistaiah P (2016) Review on MIEC cathode materials for solid oxide fuel cells. J Mol Eng Mater 4:1–7CrossRefGoogle Scholar
  35. 35.
    Rajesh S, Macedo DA, Nascimento RM (2013) Composite electrolytes and electrodes for intermediate temperature hybrid fuel cells. In: Mendez-Vilas A (ed) Materials and processes for energy: Communicating current research and technological developments, pp 485–494Google Scholar
  36. 36.
    Shen F, Lu K (2015) La0.6Sr0.4Co0.2Fe0.8O3 cathodes incorporated with Sm0.2Ce0.8O2 by three different methods for solid oxide fuel cells. J Power Sources 296:318–326CrossRefGoogle Scholar
  37. 37.
    Hu B, Wang Y, Xia C (2015) Effects of ceria conductivity on the oxygen incorporation at the LSCF-SDC-gas three-phase boundary. J Electrochem Soc 162(1):F33–F39CrossRefGoogle Scholar
  38. 38.
    Hong T, Brinkman K, Xia C (2016) Copper oxide as a synergistic catalyst for the oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite structured electrocatalyst. J Power Sources 329:281–289CrossRefGoogle Scholar
  39. 39.
    Shah M, Barnett SA (2008) Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3-δ into Gd-doped ceria. Solid State Ionics 179(35-36):2059–2064CrossRefGoogle Scholar
  40. 40.
    Richter J, Holtappels P, Graule T, Nakamura T, Gauckler LJ (2009) Materials design for perovskite SOFC cathodes. Monatsh Chem 140(9):985–999CrossRefGoogle Scholar
  41. 41.
    Liu Y, Chen K, Zhao L, Chi B, Pu J, Jiang SP, Jian L (2014) Performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes under solid oxide fuel cells operation conditions. Int J Hydrog Energy 39(28):15868–15876CrossRefGoogle Scholar
  42. 42.
    Pan Z, Liu Q, Zhang L, Zhang X, Chan SH (2015) Effect of Sr surface segregation of La0.6Sr0.4Co0.2Fe0.8O3−δ electrode on its electrochemical performance in SOC electrode on its electrochemical performance in SOC. J Electrochem Soc 162(12):F1316–F1323CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fuel Cell InstituteUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.U.S.-Pakistan Center for Advanced Studies in EnergyNational University of Sciences and TechnologyIslamabadPakistan
  3. 3.Centre for Materials Engineering and Smart Manufacturing, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia

Personalised recommendations