Skip to main content
Log in

One-pot synthesis of P-toluidine-reduced graphene oxide/Mn3O4 composite and its electrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, a promising electrode material for supercapacitor based on P-toluidine-reduced graphene oxide/Mn3O4 (GM) composite was successfully synthesized through a new one-pot synthesis route. To obtain GM composite, graphite oxide (GO) was reduced by P-toluidine first, and then, the resulting reduced graphene oxide (RGO) was hydrothermally treated accompanied with KMnO4 and K2SO4. The effect of K2SO4 on the microstructure and electrochemical performance of as-synthesized composites was investigated. At the weight feed ratio of the theoretical amount of Mn3O4 to GO is 13:1, the GM composite prepared with K2SO4 displays a network structure, but under the same conditions, GM composite prepared without K2SO4 presents a different-sized lumps structure closely piled up by Mn3O4 nanoparticles. A specific capacitance of the GM composite prepared with K2SO4 reaches to 331.6 F/g, almost two times higher than that of the composite prepared without K2SO4. Moreover, the specific capacitance retention of the composite is above 88% after 1000 cycles at 5.0 A/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11(10):4438–4442

    Article  CAS  PubMed  Google Scholar 

  2. Kong L, Liu M, Lang J, Liu M, Luo Y, Kang L (2011) Porous cobalt hydroxide film electrodeposited on nickel foam with excellent electrochemical capacitive behavior. J Solid State Electrochem 15(3):571–577

    Article  CAS  Google Scholar 

  3. Ren X (2016) Assembly of Mn3O4/carbon black composite and its supercapacitor application. Int J Electrochem Sci 11:5080–5089

    Article  CAS  Google Scholar 

  4. Zhou H, Zhai H-J (2016) Rapid preparation of the hybrid of MnO2 dispersed on graphene nanosheets with enhanced supercapacitive performance. Electrochim Acta 215:339–345

    Article  CAS  Google Scholar 

  5. Xiao X, Wang Y, Chen G, Wang L, Wang Y (2017) Mn3O4/activated carbon composites with enhanced electrochemical performances for electrochemical capacitors. J Alloys Compd 703:163–173

    Article  CAS  Google Scholar 

  6. Bui PTM, Song J, Li Z, Akhtar MS, Yang OB (2017) Low temperature solution processed Mn3O4 nanoparticles: enhanced performance of electrochemical supercapacitors. J Alloys Compd 694:560–567

    Article  CAS  Google Scholar 

  7. Chen J, Huang Y, Zhang X, Chen X, Li C (2015) MnO2 grown in situ on graphene@CNTs as electrode materials for supercapacitors. Ceram Int 41(10):12680–12685

    Article  CAS  Google Scholar 

  8. Tang Y, Chen S, Chen T, Guo W, Li Y, Mu S, Yu S, Zhao Y, Wen F, Gao F (2017) Synthesis of peanut-like hierarchical manganese carbonate microcrystals via magnetically driven self-assembly for high performance asymmetric supercapacitors. J Mater Chem A 5(8):3923–3931

    Article  CAS  Google Scholar 

  9. Song YZ, Zhao RX, Zhang KK, Ding JJ, Lv XM, Chen M, Xie JM (2017) Facile synthesis of Mn3O4/double-walled carbon nanotube nanocomposites and its excellent supercapacitive behavior. Electrochim Acta 230:350–357

    Article  CAS  Google Scholar 

  10. Fan Y, Zhang X, Liu Y, Cai Q, Zhang J (2013) One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors. Mater Lett 95:153–156

    Article  CAS  Google Scholar 

  11. Zeng Q, Ullah Z, Chen M, Zhang H, Wang R, Gao L, Liu L, Tao G, Li Q (2017) Assembly of highly stable aqueous dispersions and flexible films of nitrogen-doped graphene for high-performance stretchable supercapacitors. J Mater Sci 52(21):12751–12760

    Article  CAS  Google Scholar 

  12. Selvakumar D, Alsalme A, Alswieleh A, Jayavel R (2017) Freestanding flexible nitrogen doped-reduced graphene oxide film as an efficient electrode material for solid-state supercapacitors. J Alloys Compd 723:995–1000

    Article  CAS  Google Scholar 

  13. Jin EM, Lim JG, Jeong SM (2017) Facile synthesis of graphene-wrapped CNT-MnO2 nanocomposites for asymmetric electrochemical capacitors. J Ind Eng Chem 54:421–427

    Article  CAS  Google Scholar 

  14. Pan Z, Liu M, Yang J, Qiu Y, Li W, Xu Y, Zhang X, Zhang Y (2017) High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible all-solid-state asymmetric supercapacitors. Adv Funct Mater 27(27):1701122

    Article  CAS  Google Scholar 

  15. Liu R, Liu E, Ding R, Liu K, Teng Y, Luo Z, Li Z, Hu T, Liu T (2015) Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO2 core/shell nanocomposite for supercapacitors. Ceram Int 41(10):12734–12741

    Article  CAS  Google Scholar 

  16. Suktha P, Phattharasupakun N, Dittanet P, Sawangphruk M (2017) Charge storage mechanisms of electrospun Mn3O4 nanofibres for high-performance supercapacitors. RSC Adv 7(16):9958–9963

    Article  CAS  Google Scholar 

  17. Kéranguéven G, Faye J, Royer S, Pronkin SN (2016) Electrochemical properties and capacitance of Hausmannite Mn3O4-carbon composite synthesized by in situ autocombustion method. Electrochim Acta 222:755–764

    Article  CAS  Google Scholar 

  18. Wang K, Ma X, Zhang Z, Zheng M, Geng Z, Wang Z (2013) Indirect transformation of coordination-polymer particles into magnetic carbon-coated Mn3O4 (Mn3O4@C) nanowires for supercapacitor electrodes with good cycling performance. Chemistry 19(22):7084–7089

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Sun X, Chen Y, Zhang D, Ma Y (2012) One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Mater Lett 68:336–339

    Article  CAS  Google Scholar 

  20. Xu J, Fan X, Xia Q, Shao Z, Pei B, Yang Z, Chen Z, Zhang W (2016) A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. J Alloys Compd 685:949–956

    Article  CAS  Google Scholar 

  21. Zhang N, Qi P, Ding Y-H, Huang C-J, Zhang J-Y, Fang Y-Z (2016) A novel reduction synthesis of the graphene/Mn3O4 nanocomposite for supercapacitors. J Solid State Chem 237:378–384

    Article  CAS  Google Scholar 

  22. Jin Y, Fang M, Jia M (2014) In situ one-pot synthesis of graphene–polyaniline nanofiber composite for high-performance electrochemical capacitors. Appl Surf Sci 308:333–340

    Article  CAS  Google Scholar 

  23. Chen N, Ren Y, Kong P, Tan L, Feng H, Luo Y (2017) In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors. Appl Surf Sci 392:71–79

    Article  CAS  Google Scholar 

  24. Gui Y-C, Qian L-W, Qian X-F (2009) Nanometer MnO2: hydrothermal synthesis and effect of salt modifiers on polymorph & morphology. Chinese J Inorg Chem 25:668–673

    CAS  Google Scholar 

  25. Raj BGS, Ramprasad RNR, Asiri AM, Wu JJ, Anandan S (2015) Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochim Acta 156:127–137

    Article  CAS  Google Scholar 

  26. Km A, M M, B J, Vs P, Jayalekshmi S (2017) Mn3O4/reduced graphene oxide nanocomposite electrodes with tailored morphology for high power supercapacitor applications. Electrochim Acta 236:424–433

    Article  CAS  Google Scholar 

  27. Jana M, Saha S, Samanta P, Murmu NC, Kim NH, Kuila T, Lee JH (2017) A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LBL) MnO2-reduced graphene oxide assembly for supercapacitor application. J Power Sources 340:380–392

    Article  CAS  Google Scholar 

  28. Liu J, Jiang L, Zhang T, Jin J, Yuan L, Sun G (2016) Activating Mn3O4 by morphology tailoring for oxygen reduction reaction. Electrochim Acta 205:38–44

    Article  CAS  Google Scholar 

  29. Xiao Y, Cao Y, Gong Y, Zhang A, Zhao J, Fang S, Jia D, Li F (2014) Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites. J Power Sources 246:926–933

    Article  CAS  Google Scholar 

  30. Zhang C, Wang L, Zhao Y, Tian Y, Liang J (2016) Self-assembly synthesis of graphene oxide double-shell hollow-spheres decorated with Mn3O4 for electrochemical supercapacitors. Carbon 107:100–108

    Article  CAS  Google Scholar 

  31. Xie Y, Ji J (2016) Synthesis and capacitance performance of MnO2/RGO double-shelled hollow microsphere. J Mater Res 31(10):1423–1432

    Article  CAS  Google Scholar 

  32. Ramírez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S (2014) Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C 118(26):14073–14081

    Article  CAS  Google Scholar 

  33. Ji F, Men Y, Wang J, Sun Y, Wang Z, Zhao B, Tao X, Xu G (2019) Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4. Appl Catal B Environ 242:227–237

    Article  CAS  Google Scholar 

  34. Guo WH, Liu TJ, Jiang P, Zhang ZJ (2015) Free-standing porous manganese dioxide/graphene composite films for high performance supercapacitors. J Colloid Interface Sci 437:304–310

    Article  CAS  PubMed  Google Scholar 

  35. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833

    Article  CAS  Google Scholar 

  36. Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223

    Article  CAS  Google Scholar 

  37. Samdani J, Samdani K, Kim NH, Lee JH (2017) A new protocol for the distribution of MnO2 nanoparticles on rGO sheets and the resulting electrochemical performance. Appl Surf Sci 399:95–105

    Article  CAS  Google Scholar 

  38. Li Z, Wang J, Liu S, Liu X, Yang S (2011) Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors. J Power Sources 196(19):8160–8165

    Article  CAS  Google Scholar 

  39. Jin G, Xiao X, Li S, Zhao K, Wu Y, Sun D, Wang F (2015) Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim Acta 178:689–698

    Article  CAS  Google Scholar 

  40. Yang F, Zhao M, Sun Q, Qiao Y (2015) A novel hydrothermal synthesis and characterisation of porous Mn3O4 for supercapacitors with high rate capability. RSC Adv 5(13):9843–9847

    Article  CAS  Google Scholar 

  41. Luo Y, Yang T, Li Z, Xiao B, Zhang M (2016) High performance of Mn3O4 cubes for supercapacitor applications. Mater Lett 178:171–174

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the National Natural Science Foundation of China (NSFC. 21664009, 51063003), the Ministry of Science and Technology project (No. 2009GJG10041), the Fundamental Research Funds for the Universities of Gansu (No. 1105ZTC136), the Natural Science Foundation of Gansu Province (No. 1208RJZA173).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nali Chen or Huixia Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Hu, D., Wang, Y. et al. One-pot synthesis of P-toluidine-reduced graphene oxide/Mn3O4 composite and its electrochemical performance. J Solid State Electrochem 23, 1851–1860 (2019). https://doi.org/10.1007/s10008-019-04206-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04206-8

Keywords

Navigation