Skip to main content
Log in

Suppressing volume change and in situ electrochemical atom force microscopy observation during the lithiation/delithiation process for CuO nanorod array electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A big challenge in the high-performance transition metal oxide anode for lithium-ion batteries (LIBs) is relieving the volume changes during the lithiation/delithiation. In this work, CuO nanorod array was produced via glancing angle deposition and directly used as anode materials for thin film electrodes of LIBs. The obtained CuO nanorod array anodes show good LIB performance with a capacity of 220 μAh/cm2/μm tested at 100 μA/cm2 after 80 cycles and excellent rate performance. The obtained properties for CuO nanorod array anodes were much better than thin film anodes without nanorod array structure. In addition, the in situ electrochemical atom force microscopy (EC-AFM) characterization has been used to reveal the enhanced mechanism of CuO nanorod array anodes. On the one hand, CuO nanorods within the electrodes may serve as the hosts for Li+, and ease intercalation by shortening Li+ ion diffusion pathways, resulting in the remarkable cycling stability and rate performance. On the other hand, the “breathing” of CuO nanorod array electrode clearly observed by in situ EC-AFM with the appearance and disappearance of cracks, demonstrated that the nanorod array may act as a buffering to alleviate the giant volume variations during the cycling. As a result, the remarkable stability of the CuO nanorod array electrode allowed its use in a full lithium-ion cell with a pervasive LiCoO2 thin film cathode. Additionally, we also observed the SEI formed on the surface of electrode during cycling, which may benefit the further studies on transition metal oxide as anodes for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

    Article  CAS  Google Scholar 

  2. Dar MA, Sang HN, Kim YS, Kim WB (2010) Synthesis, characterization, and electrochemical properties of self-assembled leaf-like CuO nanostructures. J Solid State Electrochem 14:1719–1726

    Article  CAS  Google Scholar 

  3. Huang XL, Wang RZ, Xu D, Wang ZL, Wang HG, Xu JJ, Wu Z, Liu QC, Zhang Y, Zhang XB (2013) Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv Func Mater 23:4345–4353

    Article  CAS  Google Scholar 

  4. Huang Y, Huang X, Lian J, Xu D, Wang L, Zhang X (2012) Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J Mater Chem 22:2844–2847

    Article  CAS  Google Scholar 

  5. Wang H, Ma D, Huang X, Yun H, Zhang X (2012) General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci Rep 2:701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Z, Xu D, Wang H, Wu Z, Zhang X (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7:2422

    Article  CAS  PubMed  Google Scholar 

  7. Hou J, Shao Y, Ellis M, Moore R, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phy 13:15384–15402

    Article  CAS  Google Scholar 

  8. Yang J, Takeda Y, Imanishi N, Capiglia C, Xie J, Yamamoto O (2002) SiOx-based anodes for secondary lithium batteries. Solid State Ionics 152:125–129

    Article  Google Scholar 

  9. Szczech J, Song J (2010) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72

    Article  Google Scholar 

  10. Park C, Kim J, Kim H, Sohn H (2010) Li-alloy based anode materials for li secondary batteries. Chem Soc Rev 39:3115–3141

    Article  CAS  PubMed  Google Scholar 

  11. Sun MH, Qi K, Li XM, Huang QM, Wei JK, Xu Z, Wang WL, Bai XD (2016) Revealing the electrochemical lithiation routes of CuO nanowires by in-situ TEM. Chemelectrochem 3:1296–1300

    Article  CAS  Google Scholar 

  12. Pan Q, Jin H, Wang H, Yin G (2007) Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance. Electrochim Acta 53:951–956

    Article  CAS  Google Scholar 

  13. Martin L, Martinez H, Poinot D, Pecquenard B, Le Cras F (2014) Direct observation of important morphology and composition changes at the surface of the CuO conversion material in lithium batteries. J Power Sources 248:861–873

    Article  CAS  Google Scholar 

  14. Yuan W, Luo J, Yan ZG, Tan ZH, Tang Y (2017) High-performance CuO/Cu composite current collectors with array-pattern porous structures for lithium-ion batteries. Electrochim Acta 226:89–97

    Article  CAS  Google Scholar 

  15. Duan X, Huang H, Xiao S, Deng J, Zhou G, Li Q, Wang T (2016) 3D hierarchical CuO mesocrystals from ionic liquid precursors: towards better electrochemical performance for Li-ion batteries. J Mater Chem A 4:8402–8411

    Article  CAS  Google Scholar 

  16. Zhang Y, Zhang W, Li M, Yang Z, Chen G, Wang Q (2013) Cosurfactant-mediated microemulsion to free-standing hierarchical CuO arrays on copper substrates as anodes for lithium-ion batteries. J Mater Chem A 1:14368–14374

    Article  CAS  Google Scholar 

  17. Chen LB, Lu N, Xu CM, Yu HC, Wang TH (2009) Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim Acta 54:4198–4201

    Article  CAS  Google Scholar 

  18. Wang ZY, Su FB, Madhavi S, Lou XW (2011) CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale 3:1618–1623

    Article  CAS  PubMed  Google Scholar 

  19. Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J Phys Chem B 108:5547–5551

    Article  CAS  Google Scholar 

  20. Zhang QB, Wang JX, Xu DG, Wang ZX, Li XH, Zhang KL (2014) Facile large-scale synthesis of vertically aligned CuO nanowires on nickel foam: growth mechanism and remarkable electrochemical performance. J Mater Chem A 2:3865–3874

    Article  CAS  Google Scholar 

  21. Chen X, Zhang NQ, Sun KN (2012) Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. J Mater Chem 22:13637–13642

    Article  CAS  Google Scholar 

  22. Xiang JY, Tu JP, Zhang J, Zhong J, Zhang D, Cheng JP (2010) Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage. Electrochem Commun 12:1103–1107

    Article  CAS  Google Scholar 

  23. Zhang ZL, Che HW, Sun J, She XL, Chen H, Su FB (2013) Template-free synthesis of mesoporous hollow CuO microspheres as anode materials for Li-ion batteries. J Nanosci Nanotechno 13:1530–1534

    Article  CAS  Google Scholar 

  24. Park JC, Kim J, Kwon H, Song H (2009) Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater 21:803–810

    Article  CAS  Google Scholar 

  25. Gangaja B, Chandrasekharan S, Vadukumpully S, Nair SV, Santhanagopalan D (2017) Surface chemical analysis of CuO nanofiber composite electrodes at different stages of lithiation/delithiation. J Power Sources 340:356–364

    Article  CAS  Google Scholar 

  26. Chen K, Xue D, Komarneni S (2015) Beyond theoretical capacity in Cu-based integrated anode: insight into the structural evolution of CuO. J Power Sources 275:136–143

    Article  CAS  Google Scholar 

  27. Pandey GP, Klankowski SA, Liu T, Wu J, Li J (2017) Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: interfacing vertical core-shell array electrodes with a gel polymer electrolyte. J Power Sources 342:1006–1016

    Article  CAS  Google Scholar 

  28. Zhang WX, Ma G, Gu HY, Yang ZH, Cheng H (2015) A new lithium-ion battery: CuO nanorod array anode versus spinel LiNi0.5Mn1.5O4 cathode. J Power Sources 273:561–565

    Article  CAS  Google Scholar 

  29. Yoon M, Lee S, Lee D, Kim J, Moon J (2017) All-solid-state thin film battery based on well-aligned slanted LiCoO2 nanowires fabricated by glancing angle deposition. Appl Surf Sci 412:537–544

    Article  CAS  Google Scholar 

  30. Chen Y, Zhang L, Zhang HT, Zhong KH, Zhao GY, Chen GL, Lin YB, Chen SY, Huang ZG (2018) Band gap manipulation and physical properties of preferred orientation CuO thin films with nano wheatear array. Ceram Int 44:1134–1141

    Article  CAS  Google Scholar 

  31. Chen C, Dong Y, Li S, Jiang Z, Wang Y, Jiao L (2016) Rapid synthesis of three-dimensional network structure CuO as binder-free anode for high-rate sodium ion battery. J Power Sources 320:20–27

    Article  CAS  Google Scholar 

  32. Xiang JY, Tu JP, Huang XH, Yang YZ (2008) A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries. J Solid State Electrochem 12:941–945

    Article  CAS  Google Scholar 

  33. Souza EA, Landers R, Cardoso LP, Cruz TGS, Tabacniks MH, Gorenstein A (2006) Evaluation of copper oxide thin films as electrodes for microbatteries. J Power Sources 155:358–363

    Article  CAS  Google Scholar 

  34. Liu XD, Liu GY, Wang LJ, Li YP, Ma YP, Ma JM (2016) Morphology- and facet-controlled synthesis of CuO micro/nanomaterials and analysis of their lithium ion storage properties. J Power Sources 312:199–206

    Article  CAS  Google Scholar 

  35. Martin L, Martinez H, Poinot D, Pecquenard B, Le Cras F (2013) Comprehensive X-ray photoelectron spectroscopy study of the conversion reaction mechanism of CuO in lithiated thin film electrodes. J Phys Chem C 117:4421–4430

    Article  CAS  Google Scholar 

  36. Xiang JY, Tu JP, Zhang L, Zhou Y, Wang XL, Shi SJ (2010) Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J Power Sources 195:313–319

    Article  CAS  Google Scholar 

  37. Rossen E, Reimers JN, Dahn JR (1993) Synthesis and electrochemistry of spinel LT-LiCoO2. Solid State Ionics 62:53–60

    Article  CAS  Google Scholar 

  38. Tintignac S, Baddour-Hadjean R, Pereira-Ramos JP, Salot R (2012) High performance sputtered LiCoO2 thin films obtained at a moderate annealing treatment combined to a bias effect. Electrochim Acta 60:121–129

    Article  CAS  Google Scholar 

  39. Verrelli R, Scrosati B, Sun YK, Hassoun J (2014) Stable, high voltage Li0.85Ni0.46Cu0.1Mn1.49O4 spinel cathode in a lithium-ion battery using a conversion-type CuO anode. Acs Appl Mater Inter 6:5206–5211

    Article  CAS  Google Scholar 

  40. Höweling A, Glatthaar S, Nötzel D, Binder JR (2015) Evidence of loss of active lithium in titanium-doped LiNi0.5Mn1.5O4 /graphite cells. J Power Sources 274:1267–1275

    Article  CAS  Google Scholar 

  41. Kim JH, Pieczonka NPW, Li Z, Wu Y, Harris S, Powell BR (2013) Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4 /graphite Li-ion batteries. Electrochim Acta 90:556–562

    Article  CAS  Google Scholar 

  42. Vidu R, Quinlan FT, Stroeve P (2002) Use of in situ electrochemical atomic force microscopy (EC-AFM) to monitor cathode surface reaction in organic electrolyte. Ind Eng Chem Res 41:6546–6554

    Article  CAS  Google Scholar 

  43. Shen C, Hu G, Cheong LZ, Huang S, Zhang JG, Wang D (2018) Direct observation of the growth of lithium dendrites on graphite anodes by operando EC-AFM. Small Methods 2:1700298

    Article  CAS  Google Scholar 

  44. Yang F (2011) Criterion for insertion-induced microcracking and debonding of thin films. J Power Sources 196:465–469

    Article  CAS  Google Scholar 

  45. Wang CP, Ma ZS, Wang Y, Lu CS (2016) Failure prediction of high-capacity electrode materials in lithium-ion batteries. J Electrochem Soc 163:A1157–A1163

    Article  CAS  Google Scholar 

  46. Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR (2001) Colossal reversible volume changes in lithium alloys. Electrochem Solid-State Lett 4:A137–A140

    Article  CAS  Google Scholar 

  47. Beaulieu LY, Cumyn VK, Eberman KW, Krause LJ, Dahn JR (2001) A system for performing simultaneous in situ atomic force microscopy/optical microscopy measurements on electrode materials for lithium-ion batteries. Rev Sci Instrum 72:3313–3319

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the Natural Science Foundations of China (Nos. 61574037, 11344008, 11204038) and Natural Science Foundations of Fujian Province (No. 2017J01035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxin Li or Zhigao Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Peng, X., Fan, X. et al. Suppressing volume change and in situ electrochemical atom force microscopy observation during the lithiation/delithiation process for CuO nanorod array electrodes. J Solid State Electrochem 23, 367–377 (2019). https://doi.org/10.1007/s10008-018-4136-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4136-3

Keywords

Navigation