Skip to main content
Log in

Electrochemical and photoelectrochemical properties of a hybrid film made of Ru(II) complex and Zn(II)-substituted tungstoborate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new hybrid film composed of Ru(II) polypyridyl complex cation of [(bpy)2Ru(L1)Ru(bpy)2]4+ {L1 = 1,6-bis-(2-(2-phenyl)benzimidazoyl)hexane, bpy = 2,2′-bipyridine, Ru1} and Zn(II)-substituted tungstoborate anion of [BW11Zn(H2O)O39]7− (BWZn) has been successfully prepared by electrostatic self-assembly technique and characterized by UV–visible absorption spectra, cycle voltammetry, electrochemical impedance spectra, as well as permeability of the films. Upon irradiation with white light, the hybrid films generated promptly stable and reproducible photocurrents which are related to applied potential, number of layer, and incident light intensity. The layer of BWZn anion as electron-transfer bridge layer can enhance photocurrent of the (BWZn/Ru1)n photoelectrochemical cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahmed I, Farha R, Goldmann M, Ruhlmann L (2013) Chem Commun 49(5):496–498

    Article  CAS  Google Scholar 

  2. Anwar N, Sartorel A, Yaqub M, Wearen K, Laffir F, Armstrong G, Dickinson C, Bonchio M, McCormac T (2014) ACS Appl Mater Interfaces 6(11):8022–8031

    Article  CAS  PubMed  Google Scholar 

  3. Ardo S, Achey D, Morris AJ, Abrahamsson M, Meyer GJ (2011) J Am Chem Soc 133(41):16572–16580

    Article  CAS  PubMed  Google Scholar 

  4. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. John Wiley & Sons, New York

    Google Scholar 

  5. Berben LA, Peters JC (2010) Chem Commun 46(3):398–400

    Article  CAS  Google Scholar 

  6. Bryce MR, Cooke G, Duclairoir FMA, John P, Perepichka DF, Polwart N, Rotello VM, Stoddart JF, Tseng HR (2003) J Mater Chem 13(9):2111–2117

    Article  CAS  Google Scholar 

  7. Cheng L, Cox JA (2002) Chem Mater 14(1):6–8

    Article  CAS  Google Scholar 

  8. Cheng Z, Cheng L, Gao Q, Dong S, Yang X (2002) J Mater Chem 12(6):1724–1729

    Article  CAS  Google Scholar 

  9. Chernyy S, Bousquet A, Torbensen K, Iruthayaraj J, Ceccato M, Pedersen SU, Daasbjerg K (2012) Langmuir 28(25):9573–9582

    Article  CAS  PubMed  Google Scholar 

  10. Chevalier CL, Landis EC (2015) Langmuir 31(31):8633–8641

    Article  CAS  PubMed  Google Scholar 

  11. Closs GL, Miller JR (1998) Science 240:440–447

    Article  Google Scholar 

  12. Douvas AM, Makarona E, Glezos N, Argitis P, Mielczarski JA, Mielczarski E (2008) ACS Nano 2(4):733–742

    Article  CAS  PubMed  Google Scholar 

  13. Felts AK, Pollard WT, Freisner RA (1995) J Phys Chem 99(9):2929–2940

    Article  CAS  Google Scholar 

  14. Gao LH, Wang KZ, Cai L, Zhang HX, Jin LP, Huang CH, Gao HJ (2006) J Phys Chem B 110(14):7402–7408

    Article  CAS  PubMed  Google Scholar 

  15. Gao LH, Hu XJ, Zhang DS, Guo Y, Wang KZ (2008) J Nanosci Nanotechnol 8:1355–1358

    CAS  PubMed  Google Scholar 

  16. Gao LH, Wang YB, Bai LJ (2011) Spectrosc Spectr Anal 31:2192–2194

    Google Scholar 

  17. Gao LH, Lu S, Su JP, Wang KZ (2013) J Nanosci Nanotechnol 13(2):1377–1380

    Article  CAS  PubMed  Google Scholar 

  18. Gao LH, Su JP, Zhang JN, Wang KZ (2015) J Mater Sci 50(24):8064–8072

    Article  CAS  Google Scholar 

  19. Hechavarria L, Mendoza N, Altuzar P, Hu HL (2010) J Solid State Electrochem 14(2):323–330

    Article  CAS  Google Scholar 

  20. Huo Z, Zang D, Yang S, Farha R, Goldmann M, Hasenknopf B, Xu H, Ruhlmann L (2015) Electrochim Acta 179:326–335

    Article  CAS  Google Scholar 

  21. Jiang K, Xie H, Zhan W (2009) Langmuir 25(18):11129–11136

    Article  CAS  PubMed  Google Scholar 

  22. Kim YS, Liang K, Law KY, Whitten DG (1994) J Phys Chem 98(3):984–988

    Article  CAS  Google Scholar 

  23. Kowalewska B, Miecznikowski K, Makowski O, Palys B, Adamczyk L, Kulesza PJ (2007) J Solid State Electrochem 11(8):1023–1030

    Article  CAS  Google Scholar 

  24. Kullapere M, Marandi M, Matisen L, Mirkhalaf F, Carvalho AE, Maia G, Sammelselg V, Tammeveski K (2012) J Solid State Electrochem 16(2):569–578

    Article  CAS  Google Scholar 

  25. Laviron E (1979) J Electroanal Chem Interfacial Electrochem 101(1):19–28

    Article  CAS  Google Scholar 

  26. Lei IA, Lai DF, Don TM, Chen WC, Yu YY, Chiu WY (2014) Mater Chem Phys 144(1-2):41–48

    Article  CAS  Google Scholar 

  27. Mao X, Zhang JN, Gao LH, Su Y, Chen PX, Wang KZ (2016) J Nanosci Nanotechnol 16(4):3674–3678

    Article  CAS  PubMed  Google Scholar 

  28. Meng TT, Xue LX, Wang H, Wang KZ, Haga MA (2017) J Mater Chem C 5(13):3390–3396

    Article  CAS  Google Scholar 

  29. Qi JM, Wang HL, Gao LH, Lin H, Wang KZ (2015) Mater Lett 153:33–35

    Article  CAS  Google Scholar 

  30. Sereno L, Silbeer JJ, Otero L, Bohorquez MDV, Moore AL, Moore TA, Gust D (1996) J Phys Chem 100(2):814–821

    Article  CAS  Google Scholar 

  31. Walsh JJ, Long DL, Cronin L, Bond AM, Forster RJ, Keyes TE (2011) Dalton Trans 40(9):2038–2045

    Article  CAS  PubMed  Google Scholar 

  32. Walsh JJ, Mallon CT, Bond AM, Keyes TE, Forster RJ (2012) Chem Commun 48(30):3593–3595

    Article  CAS  Google Scholar 

  33. Walsh JJ, Zhu J, Zeng Q, Forster RJ, Keyes TE (2012) Dalton Trans 41(33):9928–9937

    Article  CAS  PubMed  Google Scholar 

  34. Walsh JJ, Zhu J, Bond AM, Forster RJ, Keyes TE (2013) J Electroanal Chem 706:93–101

    Article  CAS  Google Scholar 

  35. Walsh JJ, Bond AM, Forster RJ, Keyes TE (2016) Coord Chem Rev 306:217–234

    Article  CAS  Google Scholar 

  36. Xiang X, Fielden J, Rodrίguez-Córdoba WE, Huang ZQ, Zhang NF, Luo Z, Musaev DG, Lian TQ, Hill CL (2013) J Phys Chem C 117(2):918–926

    Article  CAS  Google Scholar 

  37. Xue LX, Duan ZM, Jia J, Wang KZ, Haga MA (2014) Electrochim Acta 146:776–783

    Article  CAS  Google Scholar 

  38. Xue LX, Meng TT, Zhao Y, Gao LH, Wang KZ (2015) Electrochim Acta 172:77–87

    Article  CAS  Google Scholar 

  39. Yan B, Li Y, Calhoun SR, Cottrell NG, Lella DJ, Celestian AJ (2014) Inorg Chem Commun 43:23–36

    Article  CAS  Google Scholar 

  40. Yang YJ, Yu XH (2016) J Solid State Electrochem 20(6):1697–1704

    Article  CAS  Google Scholar 

  41. Yang W, Gao LH, Wang KZ (2014) Polyhedron 82:80–87

    Article  CAS  Google Scholar 

  42. Yang W, Zheng ZB, Meng TT, Wang KZ (2015) J Mater Chem A 3(7):3441–3449

    Article  CAS  Google Scholar 

  43. Ye HY, Qi JM, Sun R, Gao LH, Wang KZ (2017) Electrochim Acta 256:291–298

    Article  CAS  Google Scholar 

  44. Zhang YQ, Gao LH, Duan ZM, Wang KZ, Wang YL, Gao HJ (2004) Acta Chim Sin 62:738–741

    CAS  Google Scholar 

  45. Zhang YQ, Gao LH, Wang KZ, Gao HJ, Wang LY (2008) J Nanosci Nanotechnol 8:1248–1253

    CAS  PubMed  Google Scholar 

  46. Zhang H, Gao Q, Li HX (2016) J Solid State Electrochem 20(6):1565–1573

    Article  CAS  Google Scholar 

  47. Zhang HL, Qi JM, Gao LH, Wang KZ (2016) Colloids Surf A Physicochem Eng Asp 492:119–126

    Article  CAS  Google Scholar 

  48. Zhao WH, Su JP, Ye HY, Gao LH, Wang KZ (2017) Mater Res Bull 92:1–8

    Article  CAS  Google Scholar 

  49. Zhu J, Zeng Q, O'Carroll S, Bond A, Keyes TE, Forster RJ (2011) Electrochem Commun 13(9):899–902

    Article  CAS  Google Scholar 

  50. Zhu J, Walsh JJ, Bond AM, Keyes TE, Forster RJ (2012) Langmuir 28(37):13536–13541

    Article  CAS  PubMed  Google Scholar 

  51. Zhuang Y, Zhang D, Ju H (2005) Analyst 130(4):534–540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of Beijing Natural Science Foundation (2182028), the National Natural Science Foundation of China (21371018), Scientific Research Ability Promotion Plan of Graduate Student of Beijing Technology and Business University (2018), the Open Research Fund Program of Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry (KLC-2018-YB2), and Analytical and Measurements Fund of Beijing Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihua Gao or Kezhi Wang.

Electronic supplementary material

ESM 1

(DOCX 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Sun, R., Qi, J. et al. Electrochemical and photoelectrochemical properties of a hybrid film made of Ru(II) complex and Zn(II)-substituted tungstoborate. J Solid State Electrochem 23, 227–235 (2019). https://doi.org/10.1007/s10008-018-4121-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4121-x

Keywords

Navigation