Abstract
Fast ion-conducting (FIC) system composed of xCdI2–(100–x)[44.4Ag2SO4–55.6(40TeO2–60B2O3)] has been prepared by melt-quenching method. The prepared samples were characterized by X-ray diffraction (XRD), impedance, and transport studies. XRD, DSC studies conclude that the samples with x = 0 to 20 show predominantly glassy nature. Conductivity measurements were performed in the frequency range 20 Hz–3 MHz by varying temperature from 30 to 150 °C. Electrical parameters such as conductivity and activation energies of all the samples were evaluated by complex impedance analysis and Arrhenius plots, respectively. The obtained results of conductivity are discussed using exchange reaction between the cations based on Lewis’ hard and soft acids and bases (HSAB) principle. Ionic conductivity is identified as being mainly due to Ag+ ions. The highest conductivity (order of 10−4 S cm−1) and ionic current (2.063 μA) is observed for CBT20 sample at room temperature; hence, it can be used as the best electrolyte material for solid-state battery application.
This is a preview of subscription content,
to check access.











Similar content being viewed by others
References
Nageswar Rao P, Ramesh Kumar E, Appa Rao B (2018) J Mater Sci Mater Electron 29(13):11247–11257
Nageswar Rao P, Ramesh Kumar E, Appa Rao B (2018) Ionics. https://doi.org/10.1007/s11581-018-2550-2
Bella F, Verna A, Gerbaldi C (2018) Mater Sci Semicond Process 73:92–98
Galliano S, Bella F, Piana G, Giacona G, Viscardi G, Gerbaldi C, Grätzel M, Barolo C (2018) Sol Energy 163:251–255
Shanti R, Bella F, Salim YS, Chee SY, Ramesh S, Ramesh K (2016) Mater Des 108:560–569
Ramesh Kumar E, Nageswar Rao P, Rajani Kumari K, Veeraiah N, Appa Rao B (2018) J Mater Sci Mater Electron. https://doi.org/10.1007/2Fs10854-018-8857-y
Veeranna Gowda VC, Anavekar RV (2007) J Mater Sci 42(11):3816–3824
Jayswal MS, Kanchan DK, Sharma P, Pant M (2011) Solid State Ionics 186(1):7–13
Padmasree KP, Kanchan DK (2008) J Solid State Electrochem 12(12):1561–1565
Hanaya M, Hatate A, Oguni M (2003) J Phys Condens Matter 15(23):3867–3873
Kuwata N, Saito T, Tatsumisago M, Minami T, Kawamura J (2004) Solid State Ionics 175(1-4):679–682
Ramesh Kumar E, Nageswar Rao P, Appa Rao B (2016) IOP Conf Ser Mater Sci Eng 149:012185
Agrawal RC, Verma ML, Gupta RK, Kumar R (2002) J Phys D Appl Phys 35(8):810–815
Pearson RG (1968) J Chem Educ 45(9):581
Suresh Kumar R, Hariharan K (1997) Solid State Ionics 104(3-4):227–236
El-Damrawi G, Hassan AK, Meikail MS (1996) Phys Chem Glasses 37:101
El-Damrawi G (1995) J Phys Condens Matter 8:1557
Sujatha B, Narayana Reddy C, Chakradhar RPS (2010) Philos Mag 90(19):2635–2650
Pakhomov GB, Neverov SL (1999) Russ Solid State Ionics 119(1-4):235–244
Lefterova ED, Angelov PV, Dimitriev YB (2000) Phys Chem Glasses 41:362
Zhang T, Masumoto T (1993) J Non-Cryst Solids 156–158:473
Ramesh Kumar E, Nageswar Rao P, Veeraiah N, Appa Rao B,(2018) Ionics, https://doi.org/10.1007/s11581-018-2592-5
Yamamoto H, Nasu H, Matsusoka J, Kamiya K (1994) J Non-Cryst Solids 170(1):87–96
Nanba T, Osaka A, Takada J, Miura Y, Inoue H, Akasaka Y, Hagihara H, Yasui I (1992) J Non-Cryst Solids 140:269–274
Li Z (2010) Electrochim Acta 5:7298–7304
Maier J (1995) Solid State Ionics 75:139–145
Fan L, Ma Y, Wang X, Singh M, Zhu B (2014) J Mater Chem A 2(15):5399–5407
Iqbal MZ, Rafiuddin (2016) Mater Sci Forum 842:76–87
Kanchan DK, Padmasree KP, Panchal HR, Kulkarni AR (2004) Ceram Int 30(7):1655–1660
Murugesan SSA, Maruthamuthu P (2002) Solid State Ionics 154–155:621
Padmasree KP, Kanchan DK, Panchal HR, Awasthi AM, Bharadwaj S (2005) Solid State Commun 136(2):102–107
Kabi S, Ghosh A (2011) J Phys Chem C 115(19):9760–9766. https://doi.org/10.1021/jp2018296
El-Damrawi G, Hassan AK, Doweidar H (2000) Phys B 291(1-2):34–40
Nageswar Rao P, Ramesh Kumar E, Krishna Murthy Goud K, Appa Rao B (2017) IJEATE 7(11):173–180
Jonscher AK (1977) Nature 267(5613):673–679
Lefterova E, Bliznakov S, Peter A, Vassilev S, Dimitriev Y (2005) Proceedings of the International Workshop “Portable and Emergency Energy Sources from Materials to Systems: 6
Bordeenithikasem P, Liu J, Kube SA, Li Y, Ma T, Scanley BE, Broadbridge CC, Vlassak JJ, Singer JP, Schroers J (2017) Sci Rep 7(1):7155
Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50(13):3501–3512. https://doi.org/10.1016/S1359-6454(02)00166-0
Lefterova E, Angelov P, Ilcheva V, Petkova T, Dimitriev Y, (2004) Nanoscience & nanotechnology, Balabanova E, Dragieva I, 4th edn. Heron Press, Sofia
Rada S, Culea M, Culea E (2008) J Non-Cryst Solids 354(52-54):5491–5495
Konijnendijk WL, Stevels JM (1975) J Non-Cryst Solids 18:30
Bhargava A, Snyder RL, Condrate RA (1987) Mater Res Bull 22(12):1603–1611
Pascuta P, Pop L, Rada S, Bosca M, Culea E (2008) J Mater Sci Mater Electron 19(5):424
Meunier G, Dormoy R, Levasseur A (1989) Mater Sci Eng B 3(1-2):19–23
Natarajan M, Rao CNR (1970) J Chem Soc A:3087
Kozhukharov V, Nikolav S, Marinov M, Troev T (1979) Mater Res Bull 14(6):735–741
Arnaudov M, Dimitrov V, Dimitriev Y, Markova L (1982) Mater Res Bull 17(9):1121–1129
Rada S, Culea E, Rus V, Pica M, Culea M (2008) J Mater Sci 43(10):3713–3716
Levasseur A, Brethous JC, Reau JM, Hagenmuller P, Couzi M (1980) Solid State Ionics 1(3-4):177–186
Sharma P, Kanchan DK, Gondaliya N, Pant M, Jayswal M, Joge P (2013) Indian J Pure Appl Phys 51(5):346–349
Padmasree K, Kanchan DK (2006) J Non-Cryst Solids 352(36-37):3841–3848
Suthanthiraraj SA, Methew V (2008) Ionics 14(1):79–83
Jayswal MS, Kanchan DK, Sharma P, Pant M (2011) Solid State Ionics 186(1):7–13
Kumar RS, Hariharan K (1997) Solid State Ionics 104(3–4):227–237
Minami T (1985) J Non-Cryst Solids 73(1-3):273–284
Prasad PSS, Radhakrishna S (1988) Solid State Ionics 28-30(1):814–820
Minami T, Ikeda Y, Tanaka M (1982) J Non-Cryst Solids 52(1-3):159–169
Hassan Md, Rafiuddin R, (2008) Hindawi Publishing Corporation, Research Letters in Physics 249402
Almond DP, West AR, Grant RJ (1982) Solid State Commun 44(8):1277–1280
Almond DP, Duncan GK, West AR (1983) Solid State Ionics 8(2):159–164
Almond DP, Hunter CC, West AR (1984) The extraction of ionic conductivities and hopping rates from a.c. conductivity data. J Mater Sci 19(10):3236–3248. https://doi.org/10.1007/BF00549810
Gowda VCV, Anavekar RV (2007) J Mater Sci 42(11):3816–3824
Masoud EM, Khairy M, Mousa MA (2013) Electrical properties of fast ion conducting silver based borate glasses: application in solid battery. J Alloys Compd 569:150–155
Keen DA, Mc Greevy RL (1990) Nature 344(6265):423–425
Gondaliya N, Kanchan DK, Sharma P, Joge P (2011) Mater Sci Appl 2(11):1639–1643
Barde RV, Waghuley SA (2013) J Adv Ceram 2(3):246–251
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rao, P.N., Ramesh Kumar, E. & Appa Rao, B. Structural and transport studies of CdI2-doped silver borotellurite fast ion-conducting system. J Solid State Electrochem 22, 3863–3871 (2018). https://doi.org/10.1007/s10008-018-4094-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10008-018-4094-9