Skip to main content
Log in

Structural and transport studies of CdI2-doped silver borotellurite fast ion-conducting system

Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Cite this article

Abstract

Fast ion-conducting (FIC) system composed of xCdI2–(100–x)[44.4Ag2SO4–55.6(40TeO2–60B2O3)] has been prepared by melt-quenching method. The prepared samples were characterized by X-ray diffraction (XRD), impedance, and transport studies. XRD, DSC studies conclude that the samples with x = 0 to 20 show predominantly glassy nature. Conductivity measurements were performed in the frequency range 20 Hz–3 MHz by varying temperature from 30 to 150 °C. Electrical parameters such as conductivity and activation energies of all the samples were evaluated by complex impedance analysis and Arrhenius plots, respectively. The obtained results of conductivity are discussed using exchange reaction between the cations based on Lewis’ hard and soft acids and bases (HSAB) principle. Ionic conductivity is identified as being mainly due to Ag+ ions. The highest conductivity (order of 10−4 S cm−1) and ionic current (2.063 μA) is observed for CBT20 sample at room temperature; hence, it can be used as the best electrolyte material for solid-state battery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nageswar Rao P, Ramesh Kumar E, Appa Rao B (2018) J Mater Sci Mater Electron 29(13):11247–11257

    CAS  Google Scholar 

  2. Nageswar Rao P, Ramesh Kumar E, Appa Rao B (2018) Ionics. https://doi.org/10.1007/s11581-018-2550-2

  3. Bella F, Verna A, Gerbaldi C (2018) Mater Sci Semicond Process 73:92–98

    Article  CAS  Google Scholar 

  4. Galliano S, Bella F, Piana G, Giacona G, Viscardi G, Gerbaldi C, Grätzel M, Barolo C (2018) Sol Energy 163:251–255

    Article  CAS  Google Scholar 

  5. Shanti R, Bella F, Salim YS, Chee SY, Ramesh S, Ramesh K (2016) Mater Des 108:560–569

    Article  CAS  Google Scholar 

  6. Ramesh Kumar E, Nageswar Rao P, Rajani Kumari K, Veeraiah N, Appa Rao B (2018) J Mater Sci Mater Electron. https://doi.org/10.1007/2Fs10854-018-8857-y

  7. Veeranna Gowda VC, Anavekar RV (2007) J Mater Sci 42(11):3816–3824

    Article  Google Scholar 

  8. Jayswal MS, Kanchan DK, Sharma P, Pant M (2011) Solid State Ionics 186(1):7–13

    Article  CAS  Google Scholar 

  9. Padmasree KP, Kanchan DK (2008) J Solid State Electrochem 12(12):1561–1565

    Article  CAS  Google Scholar 

  10. Hanaya M, Hatate A, Oguni M (2003) J Phys Condens Matter 15(23):3867–3873

    Article  CAS  Google Scholar 

  11. Kuwata N, Saito T, Tatsumisago M, Minami T, Kawamura J (2004) Solid State Ionics 175(1-4):679–682

    Article  CAS  Google Scholar 

  12. Ramesh Kumar E, Nageswar Rao P, Appa Rao B (2016) IOP Conf Ser Mater Sci Eng 149:012185

    Article  Google Scholar 

  13. Agrawal RC, Verma ML, Gupta RK, Kumar R (2002) J Phys D Appl Phys 35(8):810–815

    Article  CAS  Google Scholar 

  14. Pearson RG (1968) J Chem Educ 45(9):581

    Article  CAS  Google Scholar 

  15. Suresh Kumar R, Hariharan K (1997) Solid State Ionics 104(3-4):227–236

    Article  Google Scholar 

  16. El-Damrawi G, Hassan AK, Meikail MS (1996) Phys Chem Glasses 37:101

    CAS  Google Scholar 

  17. El-Damrawi G (1995) J Phys Condens Matter 8:1557

    Article  Google Scholar 

  18. Sujatha B, Narayana Reddy C, Chakradhar RPS (2010) Philos Mag 90(19):2635–2650

    Article  CAS  Google Scholar 

  19. Pakhomov GB, Neverov SL (1999) Russ Solid State Ionics 119(1-4):235–244

    Article  CAS  Google Scholar 

  20. Lefterova ED, Angelov PV, Dimitriev YB (2000) Phys Chem Glasses 41:362

    CAS  Google Scholar 

  21. Zhang T, Masumoto T (1993) J Non-Cryst Solids 156–158:473

    Google Scholar 

  22. Ramesh Kumar E, Nageswar Rao P, Veeraiah N, Appa Rao B,(2018) Ionics, https://doi.org/10.1007/s11581-018-2592-5

  23. Yamamoto H, Nasu H, Matsusoka J, Kamiya K (1994) J Non-Cryst Solids 170(1):87–96

    Article  CAS  Google Scholar 

  24. Nanba T, Osaka A, Takada J, Miura Y, Inoue H, Akasaka Y, Hagihara H, Yasui I (1992) J Non-Cryst Solids 140:269–274

    Article  CAS  Google Scholar 

  25. Li Z (2010) Electrochim Acta 5:7298–7304

    Article  Google Scholar 

  26. Maier J (1995) Solid State Ionics 75:139–145

    Article  CAS  Google Scholar 

  27. Fan L, Ma Y, Wang X, Singh M, Zhu B (2014) J Mater Chem A 2(15):5399–5407

    Article  CAS  Google Scholar 

  28. Iqbal MZ, Rafiuddin (2016) Mater Sci Forum 842:76–87

    Article  Google Scholar 

  29. Kanchan DK, Padmasree KP, Panchal HR, Kulkarni AR (2004) Ceram Int 30(7):1655–1660

    Article  CAS  Google Scholar 

  30. Murugesan SSA, Maruthamuthu P (2002) Solid State Ionics 154–155:621

    Article  Google Scholar 

  31. Padmasree KP, Kanchan DK, Panchal HR, Awasthi AM, Bharadwaj S (2005) Solid State Commun 136(2):102–107

    Article  CAS  Google Scholar 

  32. Kabi S, Ghosh A (2011) J Phys Chem C 115(19):9760–9766. https://doi.org/10.1021/jp2018296

    Article  CAS  Google Scholar 

  33. El-Damrawi G, Hassan AK, Doweidar H (2000) Phys B 291(1-2):34–40

    Article  CAS  Google Scholar 

  34. Nageswar Rao P, Ramesh Kumar E, Krishna Murthy Goud K, Appa Rao B (2017) IJEATE 7(11):173–180

    Google Scholar 

  35. Jonscher AK (1977) Nature 267(5613):673–679

    Article  CAS  Google Scholar 

  36. Lefterova E, Bliznakov S, Peter A, Vassilev S, Dimitriev Y (2005) Proceedings of the International Workshop “Portable and Emergency Energy Sources from Materials to Systems: 6

  37. Bordeenithikasem P, Liu J, Kube SA, Li Y, Ma T, Scanley BE, Broadbridge CC, Vlassak JJ, Singer JP, Schroers J (2017) Sci Rep 7(1):7155

    Article  Google Scholar 

  38. Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50(13):3501–3512. https://doi.org/10.1016/S1359-6454(02)00166-0

    Article  CAS  Google Scholar 

  39. Lefterova E, Angelov P, Ilcheva V, Petkova T, Dimitriev Y, (2004) Nanoscience & nanotechnology, Balabanova E, Dragieva I, 4th edn. Heron Press, Sofia

  40. Rada S, Culea M, Culea E (2008) J Non-Cryst Solids 354(52-54):5491–5495

    Article  CAS  Google Scholar 

  41. Konijnendijk WL, Stevels JM (1975) J Non-Cryst Solids 18:30

    Article  Google Scholar 

  42. Bhargava A, Snyder RL, Condrate RA (1987) Mater Res Bull 22(12):1603–1611

    Article  CAS  Google Scholar 

  43. Pascuta P, Pop L, Rada S, Bosca M, Culea E (2008) J Mater Sci Mater Electron 19(5):424

    Article  CAS  Google Scholar 

  44. Meunier G, Dormoy R, Levasseur A (1989) Mater Sci Eng B 3(1-2):19–23

    Article  Google Scholar 

  45. Natarajan M, Rao CNR (1970) J Chem Soc A:3087

  46. Kozhukharov V, Nikolav S, Marinov M, Troev T (1979) Mater Res Bull 14(6):735–741

    Article  CAS  Google Scholar 

  47. Arnaudov M, Dimitrov V, Dimitriev Y, Markova L (1982) Mater Res Bull 17(9):1121–1129

    Article  CAS  Google Scholar 

  48. Rada S, Culea E, Rus V, Pica M, Culea M (2008) J Mater Sci 43(10):3713–3716

    Article  CAS  Google Scholar 

  49. Levasseur A, Brethous JC, Reau JM, Hagenmuller P, Couzi M (1980) Solid State Ionics 1(3-4):177–186

    Article  CAS  Google Scholar 

  50. Sharma P, Kanchan DK, Gondaliya N, Pant M, Jayswal M, Joge P (2013) Indian J Pure Appl Phys 51(5):346–349

  51. Padmasree K, Kanchan DK (2006) J Non-Cryst Solids 352(36-37):3841–3848

    Article  CAS  Google Scholar 

  52. Suthanthiraraj SA, Methew V (2008) Ionics 14(1):79–83

    Article  CAS  Google Scholar 

  53. Jayswal MS, Kanchan DK, Sharma P, Pant M (2011) Solid State Ionics 186(1):7–13

    Article  CAS  Google Scholar 

  54. Kumar RS, Hariharan K (1997) Solid State Ionics 104(3–4):227–237

    Article  CAS  Google Scholar 

  55. Minami T (1985) J Non-Cryst Solids 73(1-3):273–284

    Article  CAS  Google Scholar 

  56. Prasad PSS, Radhakrishna S (1988) Solid State Ionics 28-30(1):814–820

    Article  Google Scholar 

  57. Minami T, Ikeda Y, Tanaka M (1982) J Non-Cryst Solids 52(1-3):159–169

    Article  CAS  Google Scholar 

  58. Hassan Md, Rafiuddin R, (2008) Hindawi Publishing Corporation, Research Letters in Physics 249402

  59. Almond DP, West AR, Grant RJ (1982) Solid State Commun 44(8):1277–1280

    Article  CAS  Google Scholar 

  60. Almond DP, Duncan GK, West AR (1983) Solid State Ionics 8(2):159–164

    Article  CAS  Google Scholar 

  61. Almond DP, Hunter CC, West AR (1984) The extraction of ionic conductivities and hopping rates from a.c. conductivity data. J Mater Sci 19(10):3236–3248. https://doi.org/10.1007/BF00549810

    Article  CAS  Google Scholar 

  62. Gowda VCV, Anavekar RV (2007) J Mater Sci 42(11):3816–3824

    Article  CAS  Google Scholar 

  63. Masoud EM, Khairy M, Mousa MA (2013) Electrical properties of fast ion conducting silver based borate glasses: application in solid battery. J Alloys Compd 569:150–155

    Article  CAS  Google Scholar 

  64. Keen DA, Mc Greevy RL (1990) Nature 344(6265):423–425

    Article  CAS  Google Scholar 

  65. Gondaliya N, Kanchan DK, Sharma P, Joge P (2011) Mater Sci Appl 2(11):1639–1643

    CAS  Google Scholar 

  66. Barde RV, Waghuley SA (2013) J Adv Ceram 2(3):246–251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puli Nageswar Rao.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P.N., Ramesh Kumar, E. & Appa Rao, B. Structural and transport studies of CdI2-doped silver borotellurite fast ion-conducting system. J Solid State Electrochem 22, 3863–3871 (2018). https://doi.org/10.1007/s10008-018-4094-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4094-9

Keywords

Navigation