Skip to main content
Log in

Effect of non-stoichiometry on the charge storage capacity of NiO conversion anodes in Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Conversion anodes comprising non-stoichiometric black NiO suffer severe capacity fading in Li-ion batteries despite having a high Li+ ion diffusion coefficient. We attribute this capacity fading to (i) its small crystallite size (~ 8 nm) and (ii) high charge transfer resistance (Rct ~ 60–180 Ω cm2). Small crystallites enhance grain boundaries which promote Li+ ion diffusion without efficient material utilization. In contrast, the stoichiometric green NiO anodes deliver a stable capacity of 280 mAh g−1 over 50 charge-discharge cycles. The comparatively higher capacity of green NiO can be explained from its (i) large crystallite size (~ 104 nm) and (ii) negligible Rct values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Collongues R (1992) Nonstoichiometry in oxides. Prog Cryst Growth Charact Mater 25(4):203–240

    Article  CAS  Google Scholar 

  2. Shimomura Y, Tsubokawa I, Kojima M (1954) On nickel oxides of high oxygen content. J Phys Soc Jpn 9(4):521–524

    Article  CAS  Google Scholar 

  3. Morin FJ (1954) Electrical properties of NiO. Phys Rev 93(6):1199–1204

    Article  CAS  Google Scholar 

  4. Mitoff SP (1961) Electrical conductivity and thermodynamic equilibrium in nickel oxide. J Chem Phys 35(3):882–889

    Article  CAS  Google Scholar 

  5. Shanker R, Singh RA (1973) Analysis of the exchange parameters and magnetic properties of NiO. Phys Rev 7(11):5000–5005

    Article  CAS  Google Scholar 

  6. Lu YM, Hwang WS, Yang JS, Chuang HC (2002) Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering. Thin Solid Films 420-421:54–61

    Article  CAS  Google Scholar 

  7. Ichiyanagi Y, Wakabayashi N, Yamazaki J, Yamada S, Kimishima Y, Komatsu E, Tajima H (2003) Magnetic properties of NiO nanoparticles. Physica B 329-333:862–863

    Article  CAS  Google Scholar 

  8. Makhlouf SA (2008) Electrical properties of NiO films obtained by high-temperature oxidation of nickel. Thin Solid Films 516(10):3112–3116

    Article  CAS  Google Scholar 

  9. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  CAS  Google Scholar 

  10. Badway F, Plitz I, Grugeon S, Laruelle S, Dollé M, Gozdz AS, Tarascon JM (2002) Metal oxides as negative electrode materials in Li-ion cells. Electrochem Solid-State Lett 5(6):A115–A118

    Article  CAS  Google Scholar 

  11. Kiran GK, Penki TR, Munichandraiah N, Kamath PV (2017) Electrochemical impedance studies of capacity fading of electrodeposited ZnO conversion anodes in Li-ion battery. Bull Mater Sci 40(3):427–434

    Article  CAS  Google Scholar 

  12. Kiran GK, Penki TR, Kamath PV, Munichandraiah N (2016) Effect of orientation on the reversible discharge capacity of electrodeposited Cu2O coatings as lithium-ion battery anodes. J Solid State Electrochem 20(2):555–562

    Article  CAS  Google Scholar 

  13. Needham SA, Wang G, Liu HK (2006) Synthesis of NiO nanotubes for use as negative electrodes in lithium-ion batteries. J Power Sources 159(1):254–257

    Article  CAS  Google Scholar 

  14. Vargese B, Reddy MV, Yanwu Z, Lit CS, Hoong TV, Subba Rao GV, Chowdri BVR, Wee ATS, Lim CT, Sow CH (2008) Fabrication of NiO nanowall electrodes for high performance lithium-ion battery. Chem Mater 20(10):3360–3367

    Article  Google Scholar 

  15. Huang XH, Tu JP, Zhang CQ, Zhou F (2010) Hollow microspheres of NiO as anode materials for lithium-ion batteries. Electrochim Acta 55(28):8981–8985

    Article  CAS  Google Scholar 

  16. Yuan YF, Xia XH, Wu JB, Yang JL, Chen YB, Guo SY (2010) Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium-ion batteries. Electrochem Commun 1:890–893

    Article  Google Scholar 

  17. Wang X, Li X, Sun X, Li F, Liu Q, Wang Q, He D (2010) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21:3571–3573

    Article  Google Scholar 

  18. Liu H, Wang G, Liu J, Qiao S, Ahn H (2011) Highly ordered mesoporous NiO anode material for lithium-ion batteries with an excellent electrochemical performance. J Mater Chem 21(9):3046–3052

    Article  CAS  Google Scholar 

  19. Caballero A, Hernán L, Morales J, González Z, Sánchez-Herencia HJ, Ferrari BA (2013) High capacity anode for lithium batteries consisting of mesoporous NiO nanoplatelets. Energy Fuel 27(9):5545–5551

    Article  CAS  Google Scholar 

  20. Liu L, Li Y, Yuan S, Ge M, Ren M, Sun C, Zhou Z (2010) Nanosheet-based NiO microspheres: controlled solvothermal synthesis and lithium storage performances. J Phys Chem C 114(1):251–255

    Article  CAS  Google Scholar 

  21. Zou Y, Wang Y (2011) NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 3(6):2615–2620

    Article  CAS  Google Scholar 

  22. Zhu XJ, Hu J, Dai HL, Ding L, Jiang L (2012) Reduced graphene oxide and nanosheet-based nickel oxide microsphere composite as an anode material for lithium-ion battery. Electrochim Acta 64:23–28

    Article  CAS  Google Scholar 

  23. Huang Y, Huang X, Lian J, Xu D, Wang L, Zhang XJ (2012) Self-assembly of ultrathin porous NiO nanosheet/graphene heirarchical structure for high-capacity and high-rate lithium storage. J Mater Chem 22(7):2844–2847

    Article  CAS  Google Scholar 

  24. Yoo E, Kun J, Hoson E, Zhou HS, Kudo T, Honma I (2008) Large reversible li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282

    Article  CAS  Google Scholar 

  25. Birkenstock J, Fischer RX, Messner TH (2012) https://www.brass.uni-bremen.de/, BRASS v.2.0.0, 20.12.2006

  26. Joseph S, Kamath PV (2009) Growth of Cu2O nanocrystals on stainless steel substrates by electrodeposition in presence of surfactants. J Electrochem Soc 156(10):E143–E147

    Article  CAS  Google Scholar 

  27. Prasad BE, Kamath PV (2010) Electrochemical synthesis of ZnO coatings from water–isopropanol mixed baths: control over oriented crystallization. J Solid State Electrochem 14(11):2083–2088

    Article  CAS  Google Scholar 

  28. Penki TR, Shanmughasundaram D, Kishore B, Jeyaseelan AV, Subramani AK, Munichandraiah N (2016) Composite of Li-rich Mn, Ni and Fe oxides as positive electrode materials for Li-ion battery. Electrochem Soc 163:A1493–A1502

    Article  CAS  Google Scholar 

  29. Figlarz M, Gérand B, Delahaye-Vidal A, Dumont B, Harb F, Coucou A (1990) Topotaxy, nucleation and growth. Solid State Ionics 43:143–170

    Article  CAS  Google Scholar 

  30. Gonziilez-Elipe AR, Holgado JP, Alvarez R, Munuera C (1992) Use of factor analysis and XPS to study defective nickel oxide. J Phys Chem 96(7):3080–3086

    Article  Google Scholar 

  31. Hu YY, Liu Z, Nam KW, Borkiewicz OJ, Cheng J, Hua X, Dunstan MT, Yu X, Wiaderek KM, Du LS, Chapman KW, Chupas PJ, Yang XQ, Grey CP (2013) Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater 12(12):1130–1136

    Article  CAS  Google Scholar 

  32. Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles co-based compounds towards Li. Solid State Sci 5(6):895–904

    Article  CAS  Google Scholar 

  33. Bijani S, Gabás M, Subías G, García J, Sánchez L, Morales J, Martínea L, Ramos-Barrado JR (2011) XAS study of the reversible reactivity mechanism of micro and nanostructured electrodeposited Cu2O thin films towards lithium. J Mater Chem 21(14):5368–5377

    Article  CAS  Google Scholar 

  34. Khalil A, Lalia BS, Hashaiken R (2016) Nickel oxide nanocrystals as a lithium-ion battery anode: structure-performance relationship. J Mater Sci 51(14):6624–6638

    Article  CAS  Google Scholar 

  35. Cheng MY, Ye YS, Chiu TM, Pan CJ, Hwang BJ (2014) Size effect of nickel oxide for lithium ion battery anode. J Power Sources 253:27–34

    Article  CAS  Google Scholar 

  36. Pelliccione CJ, Ding Y, Timofeeva EV, Segre CU (2015) In situ XAFS study of the capacity fading mechanisms in ZnO anodes for lithium-ion batteries. J Electrochem Soc 162(10):A1935–A1939

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GKK acknowledges the Council of Scientific and Industrial Research, Government of India (GOI) for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vishnu Kamath.

Electronic supplementary material

ESM 1

(DOCX 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, G.K., Munichandraiah, N. & Vishnu Kamath, P. Effect of non-stoichiometry on the charge storage capacity of NiO conversion anodes in Li-ion batteries. J Solid State Electrochem 22, 3833–3843 (2018). https://doi.org/10.1007/s10008-018-4087-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4087-8

Keywords

Navigation