Skip to main content

Advertisement

Log in

The conducting polymer electrolyte based on polypyrrole-polyvinyl alcohol and its application in low-cost quasi-solid-state dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of polypyrrole (PPy) on the polyvinyl alcohol (PVA)-potassium iodide (KI)-iodine (I2) polymer electrolytes has been investigated and optimized to use in a dye-sensitized solar cell (DSSC). The different weight ratios of PVA: PPy (93: 2, 91: 4, 89: 6, 87: 8, and 85: 10 wt%) polymer electrolytes (PE) were prepared by solution casting. Structural, complex formation and surface roughness of the prepared electrolytes was confirmed by X-ray diffraction, FTIR, and atomic force microscopy (AFM) respectively. Conductivity plots of all polymer films showed increasing trend with temperature and concentration of PPy. The activation energy of the optimized system found to be 0.871 kJ mol−1. UV-visible spectrum was adopted to characterize the absorption spectra of the material revealed that increase in the absorbance with increasing PPy content and shifting the absorbance maximum towards lower energy. The indirect band gap decreased from 3.78 to 2.14 eV and direct band gap decreased from 3.88 to 2.71 eV. The EIS analyses revealed the lower charge transfer resistance of 3.029 Ω cm2 at the interface between CE and PE. The excellent performance was observed in the fabricated DSSCs using PVA (85%)/PPy (10%)/KI (5%)/I2 polymer electrolyte with a short-circuit current density of 11.071 mA cm−2, open-circuit voltage of 0.644 V, fill factor of 0.575, and photovoltaic conversion efficiency of 4.09% under the light intensity of 100 mW cm−2. Hence, the PPy content in polymer electrolyte influences the remarkable performance of low-cost DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. U.S. Energy Information Administration Projection Report (2017)

  2. Sönmezoğlu S, Akyürek C, Akin S (2012) High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers. J Phys D Appl Phys 45(42):425101–425107

    Article  Google Scholar 

  3. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  4. Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, Hua J, Zakeeruddin SM, Moser JE, Grätzel M, Hagfeldt A (2017) Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat Photonics 11(6):372–378

    Article  CAS  Google Scholar 

  5. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164(1-3):3–14

    Article  Google Scholar 

  6. Yella A, Lee H-W, Tsao HN et al (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Article  CAS  Google Scholar 

  7. Kuang D, Klein C, Zhang Z, Ito S, Moser JE, Zakeeruddin S M, Grätzel M (2007) Stable, high-efficiency ionic-liquid-based mesoscopic dye-sensitized solar cells. Small 3(12):2094–2102

    Article  CAS  Google Scholar 

  8. Ito BI, de Freitas JN, De Paoli M-A, Nogueira AF (2008) Application of a composite polymer electrolyte based on montmorillonite in dye-sensitized solar cells. J Braz Chem Soc 19(4):688–696

    Article  CAS  Google Scholar 

  9. Wang P, Zakeeruddin SM, Moser J-E, Humphry-Baker R, Grätzel M (2004) A solvent-free, SeCN-/(SeCN)3 - based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. J Am Chem Soc 126(23):7164–7165

    Article  CAS  Google Scholar 

  10. Kroeze JE, Hirata N, Schmidt-Mende L, Orizu C, Ogier SD, Carr K, Grätzel M, Durrant JR (2006) Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors. Adv Funct Mater 16(14):1832–1838

    Article  CAS  Google Scholar 

  11. Nei de Freitas J, Longo C, Nogueira AF, De Paoli M-A (2008) Solar module using dye-sensitized solar cells with a polymer electrolyte. Sol Energy Mater Sol Cells 92(9):1110–1114

    Article  Google Scholar 

  12. Sygkridou D, Rapsomanikis A, Stathatos E (2017) Functional transparent quasi-solid state dye-sensitized solar cells made with different oligomer organic/inorganic hybrid electrolytes. Sol Energy Mater Sol Cells 159:600–607

    Article  CAS  Google Scholar 

  13. Zhang X-H, Wang S-M, Xu Z-X, Wu J, Xin L (2008) Poly (o-phenylenediamine)/MWNTs composite film as a hole conductor in solid-state dye-sensitized solar cells. J Photochem Photobiol A Chem 198(2-3):288–292

    Article  CAS  Google Scholar 

  14. Benseddik E, Makhlouki M, Bernede JC, Lefrant S, Proń A (1995) XPS studies of environmental stability of polypyrrole-poly (vinyl alcohol) composites. Synth Met 72(3):237–242

    Article  CAS  Google Scholar 

  15. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196(14):5990–5996

    Article  CAS  Google Scholar 

  16. Ruangchuay L (2003) Polypyrrole/poly (methylmethacrylate) blend as selective sensor for acetone in lacquer. Talanta 60(1):25–30

    Article  CAS  Google Scholar 

  17. Wang Y (2009) Recent research progress on polymer electrolytes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 93(8):1167–1175

    Article  CAS  Google Scholar 

  18. Mahmud HNME, Kassim A, Zainal Z, Yunus WMM (2006) Fourier transform infrared study of polypyrrole–poly (vinyl alcohol) conducting polymer composite films: evidence of film formation and characterization. J Appl Polym Sci 100(5):4107–4113

    Article  CAS  Google Scholar 

  19. Noor MM, Buraidah MH, Careem MA, Majid SR, Arof AK (2014) An optimized poly (vinylidene fluoride-hexafluoropropylene)–NaI gel polymer electrolyte and its application in natural dye sensitized solar cells. Electrochim Acta 121:159–167

    Article  CAS  Google Scholar 

  20. Kesavan K, Mathew CM, Rajendran S (2014) Lithium ion conduction and ion-polymer interaction in poly (vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chin Chem Lett 25(11):1428–1434

    Article  CAS  Google Scholar 

  21. Davis EA, Mott NF (1970) Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag 22(179):0903–0922

    Article  CAS  Google Scholar 

  22. Khan AA, Khan A (2009) Synthesis, characterization and electrical conductivity measurement studies of poly-o-anisidine Sn (IV) phosphate [POASn (IV)P] nano-composite cation-exchange material. Mater Sci Eng B 158(1-3):92–97

    Article  CAS  Google Scholar 

  23. Arora K, Chaubey A, Singhal R, Singh RP, Pandey MK, Samanta SB, Malhotra BD, Chand S (2006) Application of electrochemically prepared polypyrrole–polyvinyl sulphonate films to DNA biosensor. Biosens Bioelectron 21(9):1777–1783

    Article  CAS  Google Scholar 

  24. Chougule MA, Pawar SG, Godse PR, Mulik RN, Sen S, Patil VB (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 01(01):6–10

    Article  CAS  Google Scholar 

  25. Rajendran S, Sivakumar M, Subadevi R (2003) Effect of salt concentration in poly (vinyl alcohol)-based solid polymer electrolytes. J Power Sources 124(1):225–230

    Article  CAS  Google Scholar 

  26. Chen F, Shi G, Fu M et al (2003) Raman spectroscopic evidence of thickness dependence of the doping level of electrochemically deposited polypyrrole film. Synth Met 132(2):125–132

    Article  CAS  Google Scholar 

  27. Krishna A, Kumar A, Singh RK (2012) Effect of polyvinyl alcohol on the growth, structure, morphology, and electrical conductivity of polypyrrole nanoparticles synthesized via microemulsion polymerization. ISRN Nanomater 2012:1–6

    Article  Google Scholar 

  28. Vishnuvardhan TK, Kulkarni VR, Basavaraja C, Raghavendra SC (2006) Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites. Bull Mater Sci 29(1):77–83

    Article  CAS  Google Scholar 

  29. Huang K-C, Chen P-Y, Vittal R, Ho K-C (2011) Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte. Sol Energy Mater Sol Cells 95(8):1990–1995

    Article  CAS  Google Scholar 

  30. Kesavan K, Mathew CM, Rajendran S, Ulaganathan M (2014) Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate. Mater Sci Eng B 184:26–33

    Article  CAS  Google Scholar 

  31. Elkomy GM, Mousa SM, Abo Mostafa H (2016) Structural and optical properties of pure PVA/PPY and cobalt chloride doped PVA/PPY films. Arab J Chem 9:S1786–S1792

    Article  CAS  Google Scholar 

  32. Nouh SA, Abou Elfadl A, Magida MM (2017) Optical properties and spectroscopy of gamma-irradiated rosin/polycarbonate blends. Radiat Eff Defects Solids 172(1-2):127–138

    Article  CAS  Google Scholar 

  33. Parvatikar N, Jain S, Bhoraskar SV, Ambika Prasad MVN (2006) Spectroscopic and electrical properties of polyaniline/CeO2 composites and their application as humidity sensor. J Appl Polym Sci 102(6):5533–5537

    Article  CAS  Google Scholar 

  34. Nerkar DM, Rajwade MR, Jaware SE (2015) Preparation and electrical characterization of free standing PVA-PPy-FeCl3 composite polymer films. Arch Appl Sci Res 7:17–24

    CAS  Google Scholar 

  35. Ramesh S, Ng HM, Shanti R, Ramesh K (2013) Studies on the influence of titania content on the properties of poly (vinyl chloride) - poly (acrylonitrile)-based polymer electrolytes. Polym-Plast Technol Eng 52(14):1474–1481

    Article  CAS  Google Scholar 

  36. Wang Q, Moser J-E, Grätzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109(31):14945–14953

    Article  CAS  Google Scholar 

  37. Jung M-H (2014) Polypyrrole/poly (vinyl alcohol-co-ethylene) quasi-solid gel electrolyte for iodine-free dye-sensitized solar cells. J Power Sources 268:557–564

    Article  CAS  Google Scholar 

  38. Ganesan S, Muthuraaman B, Mathew V et al (2008) Performance of a new polymer electrolyte incorporated with diphenylamine in nanocrystalline dye-sensitized solar cell. Sol Energy Mater Sol Cells 92(12):1718–1722

    Article  CAS  Google Scholar 

  39. Veerender P, Saxena V, Jha P, Koiry SP, Gusain A, Samanta S, Chauhan AK, Aswal DK, Gupta SK (2012) Free-standing polypyrrole films as substrate-free and Pt-free counter electrodes for quasi-solid dye-sensitized solar cells. Org Electron 13(12):3032–3039

    Article  CAS  Google Scholar 

  40. Theerthagiri J, Senthil RA, Buraidah MH, Madhavan J, Arof AK (2015) Effect of tetrabutylammonium iodide content on PVDF-PMMA polymer blend electrolytes for dye-sensitized solar cells. Ionics 21(10):2889–2896

    Article  CAS  Google Scholar 

  41. Senthamaraikannan P, Saravanakumar SS, Arthanarieswaran VP et al (2015) Physicochemical properties of new cellulosic fibres from bark of acacia planifrons. Int J Polym Anal Charact 21:207–203

    Article  Google Scholar 

  42. Singh PK, Nagarale RK, Pandey SP et al (2011) Present status of solid-state photo electrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes. Adv Nat Sci Nanosci Nanotechnol 2:023002–023015

    Article  Google Scholar 

  43. Ulaganathan M, Nithya R, Rajendran S (2012) Surface analysis studies on polymer electrolyte membranes using scanning electron microscope and atomic force microscope, scanning electron microscopy, Dr. Viacheslav Kazmiruk (Ed.), InTech, ISBN:978-953-51-0092-8

Download references

Acknowledgments

The authors are thankful to CEESAT, the National Institute of Technology (NIT), Trichy, Tamil Nadu, for providing FTIR, UV-vis, and XRD facility. The authors are also thankful to Department of Nanoscience & Technology, SREC, Coimbatore, Tamil Nadu, for providing Solar Simulator studies. Mr. U.S. Ramaswamy, Associate professor, Department of English, Kamaraj College of Engineering and Technology, Virudhunagar, is gratefully acknowledged for his valuable guidance and for proof reading the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Manikandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, K.M., Yelilarasi, A., Senthamaraikannan, P. et al. The conducting polymer electrolyte based on polypyrrole-polyvinyl alcohol and its application in low-cost quasi-solid-state dye-sensitized solar cells. J Solid State Electrochem 22, 3785–3797 (2018). https://doi.org/10.1007/s10008-018-4070-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4070-4

Keywords

Navigation