Skip to main content
Log in

Dy- and Tb-doped CeO2-Ni cermets for solid oxide fuel cell anodes: electrochemical fabrication, structural characterization, and electrocatalytic performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Dy- and Tb-doped CeO2-Ni cermets for highly active solid-oxide fuel-cell (SOFC) anodes were fabricated by a one-pot electrodeposition process. Undoped, singly-doped, and co-doped powders were synthesized in an X-ray amorphous state, heat treated in air, and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) at different crystallization stages. In particular, in situ TEM analyses were carried out during heating in an oxygen atmosphere, in order to follow the evolution of structure and morphology and to understand the role of the dopants. The key structural effect of dopants was the inhibition of grain coarsening during heat treatment. Functional tests were carried out with micro-single chamber SOFCs, fed with a CH4/O2 mixture, the anodes of which were prepared with the CeO2-Ni powders synthesized in this study. A correlation was established between the electrocatalytic performance and the morphology of the anodic material, pinpointing that the finer and more homogeneous nanocrystalline structure of the doped powders results in better-defined and more active catalytic sites, thus improving the performance of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fergus WJ, Hui R, Li X, Wilkinson DP, Zhang J (2009) Solid oxide fuel cells: materials properties and performance. CRC Press, London

    Google Scholar 

  2. Jacobnson AJ (2010) Materials for solid oxide fuel cells. Chem Mater 22(3):660–674

    Article  Google Scholar 

  3. Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 12(11):1367–1391

    Article  CAS  Google Scholar 

  4. Vohs JM, Gorte RJ (2009) High-performance SOFC cathodes prepared by infiltration. Adv Mater 21(9):943–956

    Article  CAS  Google Scholar 

  5. Xia C, Li Y, Tian Y, Liu QH, Wang ZM, Jia LJ, Zhao YC, Li YD (2010) Intermediate temperature fuel cell with a doped ceria-carbonate composite electrolyte. J Power Sources 195(10):3149–3154

    Article  CAS  Google Scholar 

  6. Sun HB, Chen Y, Chen FL, Zhang YJ, Liu ML (2016) High-performance solid oxide fuel cells based on a thin La0.8Sr0.2Ga0.8Mg0.2O3-delta electrolyte membrane supported by a nickel-based anode of unique architecture. J Power Sources 301:199–203

    Article  CAS  Google Scholar 

  7. Chueh WC, Hao Y, Jung W, Haile SM (2012) High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. Nat Mater 11(2):155–161

    Article  CAS  Google Scholar 

  8. Bozzini B, Amati M, Gregoratti L, Mele C, Abyaneh MK, Prasciolu M, Kiskinova M (2012) In-situ photoelectron microspectroscopy during the operation of a single-chamber SOFC. Electrochem Commun 24:104–107

    Article  CAS  Google Scholar 

  9. Mele C, Bozzini B (2012) Electrodeposition of a au-Dy2O3 composite solid oxide fuel cell catalyst from eutectic urea/choline chloride ionic liquid. Energies 5(12):5363–5371

    Article  CAS  Google Scholar 

  10. Sánchez-Bautista C, Dos Santos-García AJ, Canales-Vásquez J (2010) The grain boundary effect on dysprosium doped ceria. Solid State Ionics 181(37-38):1665–1673

    Article  Google Scholar 

  11. Zheng Y, Zhou M, Ge L, Li S, Chen H, Guo L (2011) Effect of Dy on the properties of Sm-doped ceria electrolyte for IT-SOFCs. J Alloys Compd 509(4):1244–1248

    Article  CAS  Google Scholar 

  12. Ye F, Mori T, Ou DR, Zou J, Drennan J (2007) Microstructural characterization of terbium-doped ceria. Mater Res Bull 42(5):943–949

    Article  CAS  Google Scholar 

  13. Kuharuangrong S (2007) Ionic conductivity of Sm Gd Dy and Er-doped ceria. J Power Sources 171(2):506–510

    Article  CAS  Google Scholar 

  14. Martínez-Arias A, Hungría AB, Fernández-García M, Iglesias-Juez A, Conesa JC, Mather GC, Munuera G (2005) Cerium-terbium mixed oxides as potential materials for anodes in solid oxide fuel cells. J Power Sources 151:43–51

    Article  Google Scholar 

  15. Baral AK, Sankaranarayanan V (2010) Ionic transport properties in Nanocrystalline Ce(0.8)a(0.2)O(2-delta) (with a = Eu Gd Dy and ho) materials. Nanoscale Res Lett 5(3):637–643

    Article  CAS  Google Scholar 

  16. Bozzini B, Amati M, Gregoratti L, Mele C, Abyaneh MK, Prasciolu M, Kiskinova M (2012) In situ photoelectron microspectroscopy during the operation of a single-chamber SOFC. Electrochem Commun 24:104–107

    Article  CAS  Google Scholar 

  17. Bozzini B, Amati M, Gregoratti L, Kiskinova M (2013) In-situ photoelectron microspectroscopy and imaging of spontaneous electrochemical processes at the electrodes of a self-driven single cell. Sci Rep 3:2848

    Article  Google Scholar 

  18. Sezen H, Alemán B, Amati M, Dalmiglio M, Gregoratti L (2015) Spatially resolved chemical characterization with scanning photoemission Spectromicroscopy: towards near-ambient-pressure experiments. ChemCatChem 7(22):3665–3673

    Article  CAS  Google Scholar 

  19. Bozzini B, Amati M, Bocchetta P, Dal Zilio S, Knop-Gericke A, Vesselli E, Kiskinova M (2015) An in situ near-ambient pressure X-ray photoelectron spectroscopy study of Mn polarised anodically in a cell with solid oxide electrolyte. Electrochim Acta 174:532–541

    Article  CAS  Google Scholar 

  20. Bozzini B, Amati M, Mele C, Knop-Gericke A, Vesselli E (2017) An in situ near-ambient pressure X-ray photoelectron spectroscopy study of CO2 reduction at cu in a SOE cell. J Electroanal Chem 799:17–25

    Article  CAS  Google Scholar 

  21. Bozzini B, Abyaneh MK, Amati M, Gianoncelli A, Gregoratti L, Kaulich B, Kiskinova M (2012) Soft X-ray imaging and spectromicroscopy: new insights in chemical state and morphology of key components in operating fuel cells. Chem Eur J 18(33):10196–10210

    Article  CAS  Google Scholar 

  22. Amati M, Aleman B, Bozzini B, Gregoratti L, Sezen H, Kiskinova M (2016) Characterization of catalytic materials with scanning photoelectron microscopy: present and future. Surf Sci 652:20–25

    Article  CAS  Google Scholar 

  23. Pelosato R, Donazzi A, Dotelli G, Cristiani C, Natali Sora I, Mariani M (2014) Electrical characterization of co-precipitated LaBaCo2O5+δ and YBaCo2O5+δ oxides. J Eur Ceram Soc 34(16):4257–4272

    Article  CAS  Google Scholar 

  24. Lee J-H, Moon H, Lee H-W, Kim J, Kim J-D, Yoon K-H (2002) Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni–YSZ cermet. Solid State Ionics 148(1-2):15–26

    Article  CAS  Google Scholar 

  25. Jasinski P, Suzuki T, Dogan F, Anderson HU (2004) Impedance spectroscopy of single chamber SOFC. Solid State Ionics 175(1-4):35–38

    Article  CAS  Google Scholar 

  26. Morel B, Roberge R, Savoie S, Napporn TW, Meunier M (2007) Catalytic activity and performance of LSM cathode materials in single chamber SOFC. Appl Catal A Gen 323:181–187

    Article  CAS  Google Scholar 

  27. Morel B, Roberge R, Savoie S, Napporn TW, Meunier M (2007) An experimental evaluation of the temperature gradient in solid oxide fuel cells. Electrochem Solid-State Lett 10(2):B31–B33

    Article  CAS  Google Scholar 

  28. Fabbri E, D’Epifanio A, Sanna S, Di Bartolomeo E, Balestrino G, Licoccia S, Traversa E (2010) A novel single chamber solid oxide fuel cell based on chemically stable thin films of Y-doped BaZrO3 proton conducting electrolyte. Energy Environ Sci 3(5):618–621

    Article  CAS  Google Scholar 

  29. Zhang C, Lin Y, Ran R, Shao Z (2010) Improving single-chamber performance of an anode-supported SOFC by impregnating anode with active nickel catalyst. Int J Hydrog Energy 35(15):8171–8176

    Article  CAS  Google Scholar 

  30. Lee D, Kim J, Moon J (2014) Co-planar single chamber solid oxide fuel cells with concentric electrodes. J Asian Ceramic Soc 2(3):185–189

    Article  Google Scholar 

  31. Buergler BE, Grundy AN, Gauckler LJ (2006) Thermodynamic equilibrium of single-chamber SOFC relevant methane–air mixtures. J Electrochem Soc 153(7):A1378–A1385

    Article  CAS  Google Scholar 

  32. Hanna J, Lee WY, Shi Y, Ghoniem AF (2014) Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Prog Energy Combust Sci 40:74–111

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Antonio Pinna and Maurizio Russo for the technical support in TEM sample preparation and experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonietta Taurino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalano, M., Taurino, A., Zhu, J. et al. Dy- and Tb-doped CeO2-Ni cermets for solid oxide fuel cell anodes: electrochemical fabrication, structural characterization, and electrocatalytic performance. J Solid State Electrochem 22, 3761–3773 (2018). https://doi.org/10.1007/s10008-018-4064-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4064-2

Keywords

Navigation