Skip to main content

Enhanced electrochemical performance of electrospun V2O5 fibres doped with redox-inactive metals

Abstract

The structural and electrochemical effects of electrospun V2O5 with selected redox-inactive dopants (namely Na+, Ba2+ and Al3+) have been studied. The electrospun materials have been characterised via a range of analytical methods including X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area measurements and scanning and transmission electron microscopy. The incorporation of dopants in V2O5 was further studied with computational modelling. Structural analysis suggested that the dopants had been incorporated into the V2O5 structure with changes in crystal orientation and particle size, and variations in the V4+ concentration. Electrochemical investigations using potentiodynamic, galvanostatic and impedance spectroscopy analysis showed that electrochemical performance might be dependent on V4+ concentration, which influenced electronic conductivity. Na+- or Ba2+-doped V2O5 offered improved conductivities and lithium ion diffusion properties, whilst Al3+ doping was shown to be detrimental to these properties. The energetics of dopant incorporation, calculated using atomistic simulations, indicated that Na+ and Ba2+ occupy interstitial positions in the interlayer space, whilst Al3+ is incorporated in V sites and replaces a vanadyl-like (VO)3+ group. Overall, the mode of incorporation of the dopants affects the concentration of oxygen vacancies and V4+ ions in the compounds, and in turn their electrochemical performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Cavaliere S, Subianto S, Savych I, Jones DJ, Roziere J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785

    Article  CAS  Google Scholar 

  2. McNulty D, Buckley DN, O’Dwyer C (2014) Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. J Power Sources 267:831–873

    Article  CAS  Google Scholar 

  3. Whittingham MS (1976) The Role of Ternary Phases in Cathode Reactions. J Electrochem Soc 123:315–320

    Article  CAS  Google Scholar 

  4. Yu JJ, Yang J, Nie WB, Li ZH, Liu EH, Lei GT, Xiao QZ (2013) A porous vanadium pentoxide nanomaterial as cathode material for rechargeable lithium batteries. Electrochimica Acta 89:292–299

    Article  CAS  Google Scholar 

  5. Pan A, Zhang J-G, Nie Z, Cao G, Arey BW, Li G, Liang S, Liu J (2010) Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J Mater Chem 20:9193

    Article  CAS  Google Scholar 

  6. Mai L, An Q, Wei Q, Fei J, Zhang P, Xu X, Zhao Y, Yan M, Wen W, Xu L (2014) Nanoflakes-Assembled Three-Dimensional Hollow-Porous V 2 O 5 as Lithium Storage Cathodes with High-Rate Capacity. Small 10:3032–3037

    Article  CAS  Google Scholar 

  7. Surnev S, Ramsey M, Netzer F (2003) Vanadium oxide surface studies. Prog Surf Sci 73:117–165

    Article  CAS  Google Scholar 

  8. Armer CF, Yeoh JS, Li X, Lowe A (2018) Electrospun vanadium-based oxides as electrode materials. J Power Sources 395:414–429

    Article  CAS  Google Scholar 

  9. Giorgetti M, Passerini S, Smyrl WH, Berrettoni M (2000) Evidence of Bilayer Structure in V2O5 Xerogel. Inorg Chem 39:1514–1517.3

    Article  CAS  Google Scholar 

  10. Moretti A, Passerini S (2016) Bilayered Nanostructured V2O5·nH2O for Metal Batteries. Adv Energy Mater 6:1600868

    Article  Google Scholar 

  11. Cheah YL, Aravindan V, Madhavi S (2013) Synthesis and Enhanced Lithium Storage Properties of Electrospun V2O5 Nanofibers in Full-Cell Assembly with a Spinel Li4Ti5O12 Anode. ACS Appl Mater Interfaces 5:3475–3480

    Article  CAS  Google Scholar 

  12. Sakunthala A, Reddy MV, Selvasekarapandian S, Chowdari BVR, Selvin PC (2011) Energy storage studies of bare and doped vanadium pentoxide, (V1.95M0.05)O5, M = Nb, Ta, for lithium ion batteries. Energy Environ Sci 4:1712–1725

    Article  CAS  Google Scholar 

  13. Delmas C, Cognac-Auradou H, Cocciantelli JM, Ménétrier M, Doumerc JP (1994) The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation. Solid State Ion 69:257–264

    Article  CAS  Google Scholar 

  14. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion Electrode Materials for Rechargeable Lithium Batteries. Adv Mater 10:725–763

    Article  CAS  Google Scholar 

  15. Liang S, Qin M, Tang Y, Zhang Q, Li X, Tan X, Pan A (2014) Facile synthesis of nanosheet-structured V2O5 with enhanced electrochemical performance for high energy lithium-ion batteries. Met Mater Int 20:983–988

    Article  CAS  Google Scholar 

  16. Takahashi K, Wang Y, Lee K, Cao G (2006) Fabrication and Li+-intercalation properties of V2O5-TiO2 composite nanorod arrays. Appl Phys A 82:27–31

    Article  CAS  Google Scholar 

  17. Chen CH, Liu J, Stoll ME, Henriksen G, Vissers DR, Amine K (2004) Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J Power Sources 128:278–285

    Article  CAS  Google Scholar 

  18. Johnson ID, Blagovidova E, Dingwall PA, Brett DJL, Shearing PR, Darr JA (2016) High power Nb-doped LiFePO4 Li-ion battery cathodes; pilot-scale synthesis and electrochemical properties. J Power Sources 326:476–481

    Article  CAS  Google Scholar 

  19. Chung S-Y, Bloking JT, Chiang Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  20. Wu Y, Zhu P, Zhao X, Reddy MV, Peng S, Chowdari BVR, Ramakrishna S (2013) Highly improved rechargeable stability for lithium/silver vanadium oxide battery induced viaelectrospinning technique. J Mater Chem A 1:852–859

    Article  CAS  Google Scholar 

  21. Zhan S, Wei Y, Bie X, Wang C, Du F, Chen G, Hu F (2010) Structural and electrochemical properties of Al3+ doped V2O5 nanoparticles prepared by an oxalic acid assisted soft-chemical method. J Alloys Compd 502:92–96

    Article  CAS  Google Scholar 

  22. Cheah YL, Aravindan V, Madhavi S (2012) Improved Elevated Temperature Performance of Al-Intercalated V2O5 Electrospun Nanofibers for Lithium-Ion Batteries. ACS Appl Mater Interfaces 4:3270–3277

    Article  CAS  Google Scholar 

  23. Armer CF, Lübke M, Reddy MV, Darr JA, Li X, Lowe A (2017) Phase change effect on the structural and electrochemical behaviour of pure and doped vanadium pentoxide as positive electrodes for lithium ion batteries. J Power Sources 353:40–50

    Article  CAS  Google Scholar 

  24. Liu H, Wang Y, Li L, Wang K, Hosono E, Zhou H (2009) Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J Mater Chem 19:7885

    Article  CAS  Google Scholar 

  25. Coustier F, Passerini S, Smyrl WH (1997) Dip-coated silver-doped V2O5 xerogels as host materials for lithium intercalation. Solid State Ion 100:247–258

    Article  CAS  Google Scholar 

  26. Coustier F, Hill J, Owens BB, Passerini S, Smyrl WH (1999) Doped vanadium oxides as host materials for lithium intercalation. J Electrochem Soc 146:1355–1360

    Article  CAS  Google Scholar 

  27. Zhan S, Chen G, Liu D, Li A, Wang C, Wei Y (2009) Effects of Cr doping on the structural and electrochemical properties of V2O5. J Alloys Compd 479:652–656

    Article  CAS  Google Scholar 

  28. Wei Y, Ryu C-W, Kim K-B (2007) Improvement in electrochemical performance of V2O5 by Cu doping. J Power Sources 165:386–392

    Article  CAS  Google Scholar 

  29. Venkatesan A, Krishna Chandar NR, Kandasamy A, Karl Chinnu M, Marimuthu KN, Mohan Kumar R, Jayavel R (2015) Luminescence and electrochemical properties of rare earth (Gd, Nd) doped V2O5 nanostructures synthesized by a non-aqueous sol-gel route. RSC Adv 5:21778–21785

    Article  CAS  Google Scholar 

  30. Liang X, Gao G, Liu Y, Zhang T, Wu G (2017) Synthesis and characterization of Fe-doped vanadium oxide nanorods and their electrochemical performance. J Alloys Compd 715:374–383

    Article  CAS  Google Scholar 

  31. Li X, Liu C, Zhang C, Fu H, Nan X, Ma W, Li Z, Wang K, Wu H, Cao G (2016) Effects of Preinserted Na Ions on Li-Ion Electrochemical Intercalation Properties of V2O5. ACS Appl Mater Interfaces 8:24629–24637

    Article  CAS  Google Scholar 

  32. Li Z, Zhang C, Liu C, Fu H, Nan X, Wang K, Li X, Ma W, Lu X, Cao G (2016) Enhanced Electrochemical Properties of Sn-doped V2O5 as a Cathode Material for Lithium Ion Batteries. Electrochimica Acta 222:1831–1838

    Article  CAS  Google Scholar 

  33. Zeng H, Liu D, Zhang Y, See KA, Jun Y-S, Wu G, Gerbec JA, Ji X, Stucky GD (2015) Nanostructured Mn-Doped V2O5 Cathode Material Fabricated from Layered Vanadium Jarosite. Chem Mater 27:7331–7336

    Article  CAS  Google Scholar 

  34. Giorgetti M, Berrettoni M, Smyrl WH (2007) Doped V2O5-Based Cathode Materials: Where Does the Doping Metal Go? An X-ray Absorption Spectroscopy Study. Chem Mater 19:5991–6000

    Article  CAS  Google Scholar 

  35. Tepavcevic S, Xiong H, Stamenkovic VR, Zuo X, Balasubramanian M, Prakapenka VB, Johnson CS, Rajh T (2012) Nanostructured Bilayered Vanadium Oxide Electrodes for Rechargeable Sodium-Ion Batteries. ACS Nano 6:530–538

    Article  CAS  Google Scholar 

  36. Pham-Cong D, Ahn K, Hong SW, Jeong SY, Choi JH, Doh CH, Jin JS, Jeong ED, Cho CR (2014) Cathodic performance of V2O5 nanowires and reduced graphene oxide composites for lithium ion batteries. Curr Appl Phys 14:215–221

    Article  Google Scholar 

  37. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun Ultralong Hierarchical Vanadium Oxide Nanowires with High Performance for Lithium Ion Batteries. Nano Lett 10:4750–4755

    Article  CAS  Google Scholar 

  38. Cheah YL, Gupta N, Pramana SS, Aravindan V, Wee G, Srinivasan M (2011) Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J Power Sources 196:6465–6472

    Article  CAS  Google Scholar 

  39. Wang H, Ma D, Huang Y, Zhang X (2012) Electrospun V2O5 Nanostructures with Controllable Morphology as High-Performance Cathode Materials for Lithium-Ion Batteries. Chem - Eur J 18:8987–8993

    Article  CAS  Google Scholar 

  40. Lutterotti L, Matthies S, Wenk H (1999) MAUD (Material Analysis Using Diffraction): a user friendly Java program for Rietveld Texture Analysis and more. Twelfth Int Conf Textures Mater ICOTOM-12:1599

    Google Scholar 

  41. Islam MS, Fisher CAJ (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204

    Article  CAS  Google Scholar 

  42. Catlow CRA (1997) Computer Modelling in Inorganic Crystallography. Academic Press, San Diego

    Google Scholar 

  43. Gale JD, Rohl AL (2003) The General Utility Lattice Program (GULP). Mol Simul 29:291–341

    Article  CAS  Google Scholar 

  44. Shklover V, Haibach T, Nespar R, Novak P, Reid F (1996) Crystal structure of the produce of Mg2+ insertion into V2O5 single crystals Locality: synthetic Sample:IIb. J Solid State Chem 123:317–323

    Article  CAS  Google Scholar 

  45. Sun D, Jin G, Wang H, Liu P, Ren Y, Jiang Y, Tang Y, Huang X (2014) Aqueous rechargeable lithium batteries using NaV6O15 nanoflakes as high performance anodes. J Mater Chem A 2:12999–13005

    Article  CAS  Google Scholar 

  46. Liu J, Guo W, Qu F, Feng C, Li C, Zhu L, Zhou J, Ruan S, Chen W (2014) V-doped In2O3 nanofibers for H2S detection at low temperature. Ceram Int 40:6685–6689

    Article  CAS  Google Scholar 

  47. Nayak S, Sahoo B, Chaki TK, Khastgir D (2014) Facile preparation of uniform barium titanate (BaTiO 3) multipods with high permittivity: impedance and temperature dependent dielectric behavior. RSC Adv 4:1212–1224

    Article  CAS  Google Scholar 

  48. Marsh J, Minel L, Barthes-Labrousee MG, Gorse D (1998) Interaction of epoxy model molecules with aluminium, anodised titanium and copper surfaces: an XPS study. Appl Surf Sci 133:270–286

    Article  CAS  Google Scholar 

  49. Zhao H, Pan L, Xing S, Luo J, Xu J (2013) Vanadium oxides–reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance. J Power Sources 222:21–31

    Article  CAS  Google Scholar 

  50. Qin M, Liu J, Liang S, Zhang Q, Li X, Liu Y, Lin M (2014) Facile synthesis of multiwalled carbon nanotube–V2O5 nanocomposites as cathode materials for Li-ion batteries. J Solid State Electrochem 18:2841–2846

    Article  CAS  Google Scholar 

  51. Kawakita J, Majima M, Miura T, Kishi T (1997) Preparation and lithium insertion behaviour of oxygen-deficient Li1 + xV3O8 − δ. J Power Sources 66:135–139

    Article  CAS  Google Scholar 

  52. Zhu C, Shu J, Wu X, Li P, Li X Electrospun V2O5 micro/nanorods as cathode materials for lithium ion battery. J Electroanal Chem

  53. Hu F, Jiang W, Dong Y, Lai X, Xiao L, Wu X (2017) Synthesis and electrochemical performance of NaV6O15 microflowers for lithium and sodium ion batteries. RSC Adv 7:29481–29488

    Article  CAS  Google Scholar 

  54. Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem 19:2526–2552

    Article  CAS  Google Scholar 

  55. Przesniak-Welenc M, Karczewski J, Smalc-Koziorowska J, Lapinski M, Sadowski W, Koscielska B (2016) The influence of nanostructure size on V2O5 electrochemical properties as cathode materials for lithium ion batteries. RSC Adv 6:55689–55697

    Article  CAS  Google Scholar 

  56. Huang S-Z, Cai Y, Jin J, Li Y, Zheng X-F, Wang H-E, Wu M, Chen L-H, Su B-L (2014) Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion batteries. J Mater Chem A 2:14099

    Article  CAS  Google Scholar 

  57. Kim B-H, Yang KS, Yang DJ (2013) Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors. Electrochimica Acta 109:859–865

    Article  CAS  Google Scholar 

  58. Mai L, Xu X, Han C, Luo Y, Xu L, Wu YA, Zhao Y (2011) Rational Synthesis of Silver Vanadium Oxides/Polyaniline Triaxial Nanowires with Enhanced Electrochemical Property. Nano Lett 11:4992–4996

    Article  CAS  Google Scholar 

  59. Yu DM, Zhang ST, Liu DW, Zhou XY, Xie SH, Zhang QF, Liu YY, Cao GZ (2010) Effect of manganese doping on Li-ion intercalation properties of V2O5 films. J Mater Chem 20:10841

    Article  CAS  Google Scholar 

  60. Zhu K, Qiu H, Zhang Y, Zhang D, Chen G, Wei Y (2015) Synergetic Effects of Al3+ Doping and Graphene Modification on the Electrochemical Performance of V2O5 Cathode Materials. ChemSusChem 8:1017–1025

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the A*STAR Research Attachment Program, Institute of Materials Research and Engineering (IMRE), Singapore. Thanks to Professor B V R Chowdari, National University of Singapore Department of Physics, for the use of his laboratories in processing these coin cells. Further thanks to Luxmi Devi Narain for graphical support. The authors acknowledge the use of the UCL Legion High Performance Computing Facility (Legion@UCL), and associated support services, in the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Li or Adrian Lowe.

Additional information

Highlights

Dopants of varying oxidation states incorporated into electrospun V2O5 are studied.

Doping showed significant impacts on the crystallinity and V4+ concentration.

2 at% Na+ and 3 at% Ba2+ in V2O5 improved electrochemical performance.

Doping 3 at% Al3+ in V2O5 did not improve electrochemical performance.

Electronic supplementary material

ESM 1

(DOCX 414 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armer, C.F., Lübke, M., Johnson, I. et al. Enhanced electrochemical performance of electrospun V2O5 fibres doped with redox-inactive metals. J Solid State Electrochem 22, 3703–3716 (2018). https://doi.org/10.1007/s10008-018-4055-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4055-3

Keywords