Skip to main content
Log in

From nickel oxalate dihydrate microcubes to NiS2 nanocubes for high performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, NiS2 nanocubes were successfully synthesized by a novel facile solvothermal method using NiC2O4·2H2O microstructures and used as an electrode for high-performance supercapacitors. The electrochemical properties of the prepared NiS2 electrode were studied using galvanostatic charge–discharge analysis, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) studies. Its maximum specific capacitance was 2077 F g−1 at a constant current density of about 0.65 A g−1. Further, the EIS results confirmed the pseudocapacitive nature of the NiS2 electrode. The experimental results suggested that the NiS2 electro-active material demonstrates excellent electrochemical performance with high specific capacitance, low resistance, and excellent cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and Supercapacitors begin? Science 343(6176):1210–1211

    Article  CAS  PubMed  Google Scholar 

  2. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88

    Article  CAS  PubMed  Google Scholar 

  3. Brousse T, Bélanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162(5):A5185–A5189

    Article  CAS  Google Scholar 

  4. Li Y, Li Z, Shen PK (2014) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480

    Article  CAS  Google Scholar 

  5. Balducci A, Belanger D, Brousse T, Long JW, Sugimoto W (2017) A guideline for reporting performance metrics with electrochemical capacitors: from electrode materials to full devices. J Electrochem Soc 164(7):A1487–A1488

    Article  CAS  Google Scholar 

  6. Zhang F, Xiao F, Dong ZH, Shi W (2013) Synthesis of polypyrrole wrapped graphene hydrogels composites as supercapacitor electrodes. Electrochim Acta 114:25–132

    Google Scholar 

  7. Liu Y, Zhang Y, Ma G, Wang Z, Liu K, Liu H (2013) Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim Acta 88:519–525

    Article  CAS  Google Scholar 

  8. Repp S, Harputlu E, Gurgen S, , Castellano M, , Kremer N, , Pompe N, Wörner J, Hoffmann A, Thomann R, Emen FM, Weber S, Ocakoglu K, Erdem E. (2018) Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 10:1877–1884, 4

    Article  CAS  PubMed  Google Scholar 

  9. Genc R, Alas MO, Harputlu E, Repp S, Kremer N, Castellano M, Colak SG, Ocakoglu K, Erdem E (2017) High-capacitance hybrid supercapacitor based on multicolored fluorescent carbon-dots. Sci Rep 7(1):11222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang K, Gao S, Du Z, Yuan A, Lu W, Chen L (2016) MnO2-carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J Power Sources 305:30–36

    Article  CAS  Google Scholar 

  11. Xu L, Shi R, Li H, Han C, Wu M, Wong C-P, Kang F, Li B (2018) Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon 127:459–468

    Article  CAS  Google Scholar 

  12. Zhang F, Zhang G, Yao H, Gao Z, Chen X, Yang Y (2018) Scalable in-situ growth of self-assembled coordination supramolecular network arrays: a novel high-performance energy storage material. Chem Eng J 338:230–239

    Article  CAS  Google Scholar 

  13. Vadivel S, Saravanakumar B, Kumaravel M, Maruthamani D, Balasubramanian N, Manikandan A, Ramadoss G, Paul B, Hariganesh S (2018) Facile solvothermal synthesis of BiOI microsquares as a novel electrode material for supercapacitor applications. Mater Lett 210:109–112

    Article  CAS  Google Scholar 

  14. Li L, Liu X, Liu C, Wan H, Zhang J, Liang P, Wang H, Wang H (2018) Ultra-long life nickel nanowires@nickel-cobalt hydroxide nanoarrays composite pseudocapacitive electrode: construction and activation mechanism. Electrochim Acta 259:303–312

    Article  CAS  Google Scholar 

  15. Muller GA, Cook JB, Kim H-S, Tolbert SH, Dunn B (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15(3):1911–1917

    Article  CAS  PubMed  Google Scholar 

  16. Krishnamoorthy K, Pazhamalai P, Kim SJ (2017) Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor. Electrochim Acta 227:85–94

    Article  CAS  Google Scholar 

  17. Qiu Y, Fan H, Chang X, Dang H, Luo CZ (2018) Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Mater Lett 434:1–20

    Google Scholar 

  18. Vernardou D, Sapountzis A, Spanakis E, Kenanakis G, Koudoumas E, Katsarakis N (2013) Electrochemical activity of electrodeposited V2O5 coatings. J Electrochem Soc 160:6–9

    Article  CAS  Google Scholar 

  19. Pang H, Wei C, Li X, Li G, Ma Y, Li S, Chen J, Zhang J (2014) Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. Sci Rep 4:1–8

    Google Scholar 

  20. Akbarzadeh R, Dehghani H, Behnoudnia F (2014) Sodium thiosulfate-assisted synthesis of NiS2 nanostructure by using nickel(II)-Salen precursor: optical and magnetic properties. Dalton Trans 43(44):16745–16753

    Article  CAS  PubMed  Google Scholar 

  21. Nair N, Majumder S, Sankapal BR. (2018) Pseudocapacitive behavior of unidirectional CdS nanoforest in 3D architecture through solution chemistry 659: 105–111

  22. Liu H, Guo Z, Wang X, Hao J, Lian J (2018) CuS/MnS composite hexagonal nanosheet clusters: synthesis and enhanced pseudocapacitive properties. Electrochim Acta 271:425–432

    Article  CAS  Google Scholar 

  23. Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    Article  CAS  Google Scholar 

  24. Gao MR, Xu Y-F, Jiang J, Yu S-H (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42(7):2986–3167

    Article  CAS  PubMed  Google Scholar 

  25. Yu S-H, Yoshimura M (2002) Fabrication of powders and thin films of various nickel sulfides by soft solution-processing routes. Adv Funct Mater 12(4):277–285

    Article  CAS  Google Scholar 

  26. Du N, Zheng W, Li X, He G, Wang L, Shi J (2017) Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors. Chem Eng J 323:415–424

    Article  CAS  Google Scholar 

  27. Nandhini S, Juliet Christina Mary A, Muralidharan G (2018) Facile microwave-hydrothermal synthesis of NiS nanostructures for supercapacitor applications. Appl Surf Sci 449:485–491

    Article  CAS  Google Scholar 

  28. Peng L, Ji X, Wan H, Ruan Y, Xu K, Chen Ch ML, Jiang J (2015) Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: an experimental and computational study. Electrochim Acta 182:361–367

    Article  CAS  Google Scholar 

  29. Abdelhady AL, Malik MA, O'Brien P, Tuna F (2012) Nickel and iron sulfide nanoparticles from thiobiurets. J Phys Chem C 116(3):2253–2259

    Article  CAS  Google Scholar 

  30. Yang J, Duan X, Qin Q, Zheng W (2013) Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A 1(27):7880–7884

    Article  CAS  Google Scholar 

  31. Li X, Shen J, Li N, Ye M (2015) Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitors. Mater Lett 139:81–85

    Article  CAS  Google Scholar 

  32. Liu X, Qi X, Zhang Z, Ren L, Liu Y, Meng L, Huang K, Zhong J (2014) One-step electrochemical deposition of nickel sulfide/graphene and its use for supercapacitors. Ceram Int 40:8189–8193

    Article  CAS  Google Scholar 

  33. Han Z-H, Yu Sh-H, Li Y-P, Zhao H-Q, Li F-Q, Xie Y, Qian Y-T (1999) Convenient solvothermal synthesis and phase control of nickel selenides with different morphologies. Chem Mater 11:2302–2304

    Article  CAS  Google Scholar 

  34. Tiana WG, Wang PP, Ren L, Sun GB, Sun LN, Yang K, Wei BQ, Hu CW (2007) Controllable synthesis of NiC2O4·2H2O nanorods precursor and applications in the synthesis of nickel-based nanostructures. J Solid State Chem 180:3551–3559

    Article  CAS  Google Scholar 

  35. Carney CS, Gump CJ, Weimer AW (2006) Rapid nickel oxalate thermal decomposition for producing fine porous nickel metal powders: Part 3: Mechanism. Mater Sci Eng A 431:26–40

    Article  CAS  Google Scholar 

  36. Akbarzadeh R, Dehghani H (2018) Ni- supported multi-walled carbon nanotubes for intensification of electrochemical hydrogen storage. J Solid State Electrochem 22:395

    Article  CAS  Google Scholar 

  37. Li G, Huang X, Shi Y, Guo J (2001) Preparation and characteristics of nanocrystalline NiO by organic solvent method. Mater Lett 51:325–330

    Article  CAS  Google Scholar 

  38. Nakamoto K (1963) Infrared spectra of inorganic and coordination compounds. John Wiley, New York

    Google Scholar 

  39. Behnoudnia F, Dehghani H (2014) Anion effect on the control of morphology for NiC2O4·2H2O nanostructures as precursors for synthesis of Ni(OH)2 and NiO nanostructures and their application for removing heavy metal ions of cadmium(II) and lead(II). Dalton Trans 43:3471–3478

    Article  CAS  PubMed  Google Scholar 

  40. Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, Kim SJ (2014) One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem Eng J 251:116–122

    Article  CAS  Google Scholar 

  41. Parveen N, Ansari SA, Alamri HR, Ansari MO, Khan Z, Cho MH (2018) Facile Synthesis of SnS2 nanostructures with different morphologies for high-performance supercapacitor applications. ACS Omega 3:1581–1588

    Article  CAS  Google Scholar 

  42. Chen CY, Shih ZY, Yang Z, Chang HT (2012) Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors. J Power Sources 215:43–47

    Article  CAS  Google Scholar 

  43. Ren B, Fan M, Liu Q, Wang J, Song D, Bai X (2013) Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode. Electrochimica Acta 92:197–204

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the University of Kashan by Grant No. 159183/37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Dehghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh, R., Dehghani, H. From nickel oxalate dihydrate microcubes to NiS2 nanocubes for high performance supercapacitors. J Solid State Electrochem 22, 3375–3382 (2018). https://doi.org/10.1007/s10008-018-4040-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4040-x

Keywords

Navigation