Interlayer-expanded MoS2/graphene composites as anode materials for high-performance lithium-ion batteries

Original Paper

Abstract

A facile strategy was developed to prepare interlayer-expanded MoS2/graphene composites through a one-step hydrothermal reaction method. MoS2 nanosheets with several-layer thickness were observed to uniformly grow on the surface of graphene sheets. And the interlayer spacing of MoS2 in the composites was determined to expand to 0.95 nm by ammonium ions intercalation. The MoS2/graphene composites show excellent lithium storage performance as anode materials for Li-ion batteries. Through gathering advantages including expanded interlayers, several-layer thickness, and composited graphene, the composites exhibit reversible capacity of 1030.6 mAh g−1 at the current density of 100 mA g−1 and still retain a high specific capacity of 725.7 mAh g−1 at a higher current density of 1000 mA g−1 after 50 cycles.

Keywords

Interlayer-expanded MoS2/graphene composites Anode materials Lithium-ion batteries 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (NSFC 21571170, 21501168, 21701124, and 51702236) and Postdoctoral Science Foundation of China (2017M611171).

Supplementary material

10008_2018_4018_MOESM1_ESM.docx (890 kb)
ESM 1 (DOCX 889 kb)

References

  1. 1.
    Nishi Y (2001) The development of lithium ion secondary batteries. Chem Rec 1(5):406–413CrossRefGoogle Scholar
  2. 2.
    Kraytsberg A, Ein-Eli Y (2017) A critical review-promises and barriers of conversion electrodes for Li-ion batteries. J Solid State Electrochem 21(7):1907–1923CrossRefGoogle Scholar
  3. 3.
    Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607CrossRefGoogle Scholar
  4. 4.
    Xu X, Liu W, Kim Y, Cho J (2014) Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9(5):604–630CrossRefGoogle Scholar
  5. 5.
    Sen UK, Mitra S (2014) Improved electrode fabrication method to enhance performance and stability of MoS2-based lithium-ion battery anode. J Solid State Electrochem 18(10):2701–2708CrossRefGoogle Scholar
  6. 6.
    Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H (2011) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed 50(47):11093–11097CrossRefGoogle Scholar
  7. 7.
    Du G, Guo Z, Wang S, Zeng R, Chen Z, Liu H (2010) Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem Commun 46(7):1106–1108CrossRefGoogle Scholar
  8. 8.
    Rasamani KD, Alimohammadi F, Sun Y (2017) Interlayer-expanded MoS2. Mater Today 20(2):83–91CrossRefGoogle Scholar
  9. 9.
    Guo J, Zhu H, Sun Y, Tang L, Zhang X (2016) Boosting the lithium storage performance of MoS2 with graphene quantum dots. J Mater Chem A 4(13):4783–4789CrossRefGoogle Scholar
  10. 10.
    Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon JP (2010) Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater 22(16):4522–4524CrossRefGoogle Scholar
  11. 11.
    Wang P p, Sun H, Ji Y, Li W, Wang X (2014) Three-dimensional assembly of single-layered MoS2. Adv Mater 26:964–969CrossRefGoogle Scholar
  12. 12.
    Gao M-R, Xu Y-F, Jiang J, Yu S-H (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42(7):2986–3017CrossRefGoogle Scholar
  13. 13.
    Guo Z-Y, Zhong Y, Liu Y, Mao C-M, Li G-C (2017) MoS2 nanosheet arrays supported on hierarchical porous carbon with enhanced lithium storage properties. Chin Chem Lett 28(4):743–747CrossRefGoogle Scholar
  14. 14.
    Mao C, Zhong Y, Shang H, Li C, Guo Z, Li G (2016) Carbon encapsulated nanosheet-assembled MoS2 nanospheres with highly reversible lithium storage. Chem Eng J 304:511–517CrossRefGoogle Scholar
  15. 15.
    Zhong Y, Zhuang Q, Mao C, Xu Z, Guo Z, Li G (2018) Vapor phase sulfurization synthesis of interlayer-expanded MoS2@ C hollow nanospheres as a robust anode material for lithium-ion batteries. J Alloys Compd 745:8–15CrossRefGoogle Scholar
  16. 16.
    Jiang L, Lin B, Li X, Song X, Xia H, Li L, Zeng H (2016) Monolayer MoS2–graphene hybrid aerogels with controllable porosity for lithium-ion batteries with high reversible capacity. ACS Appl Mater Interfaces 8(4):2680–2687CrossRefGoogle Scholar
  17. 17.
    Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6):4720–4728CrossRefGoogle Scholar
  18. 18.
    Gong Y, Yang S, Zhan L, Ma L, Vajtai R, Ajayan PM (2014) A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv Funct Mater 24(1):125–130CrossRefGoogle Scholar
  19. 19.
    Jing Y, Ortiz-Quiles EO, Cabrera CR, Chen Z, Zhou Z (2014) Layer-by-layer hybrids of MoS2 and reduced graphene oxide for lithium ion batteries. Electrochim Acta 147:392–400CrossRefGoogle Scholar
  20. 20.
    Cao X, Shi Y, Shi W, Rui X, Yan Q, Kong J, Zhang H (2013) Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9(20):3433–3438CrossRefGoogle Scholar
  21. 21.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  22. 22.
    Dungey KE, Curtis MD, Penner-Hahn JE (1998) Structural characterization and thermal stability of MoS2 intercalation compounds. Chem Mater 10(8):2152–2161CrossRefGoogle Scholar
  23. 23.
    Ong EW, Eckert J, Dotson LA, Glaunsinger WS (1994) Nature of guest species within alkaline earth-ammonia intercalates of titanium disulfide. Chem Mater 6(11):1946–1954CrossRefGoogle Scholar
  24. 24.
    Huang K-J, Wang L, Zhang J-Z, Wang L-L, Mo Y-P (2014) One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor. Energy 67:234–240CrossRefGoogle Scholar
  25. 25.
    Maugé F, Lamotte J, Nesterenko N, Manoilova O, Tsyganenko A (2001) FT-IR study of surface properties of unsupported MoS2. Catal Today 70(1-3):271–284CrossRefGoogle Scholar
  26. 26.
    Liu S, Zhang X, Shao H, Xu J, Chen F, Feng Y (2012) Preparation of MoS2 nanofibers by electrospinning. Mater Lett 73:223–225CrossRefGoogle Scholar
  27. 27.
    Wang H, Robinson JT, Li X, Dai H (2009) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131(29):9910–9911CrossRefGoogle Scholar
  28. 28.
    Zhao C, Wang X, Kong J, Ang JM, Lee PS, Liu Z, Lu X (2016) Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: a novel van der Waals heterostructure for lithium-ion batteries. ACS Appl Mater Interfaces 8(3):2372–2379CrossRefGoogle Scholar
  29. 29.
    Anto JA, Nethravathi C, Rajamathi M (2014) Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2 (M= Mo, W). J Phys Chem C 118(2):1386–1396CrossRefGoogle Scholar
  30. 30.
    Wu Z, Tang C, Zhou P, Liu Z, Xu Y, Wang D, Fang B (2015) Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS2. J Mater Chem A 3(24):13050–13056CrossRefGoogle Scholar
  31. 31.
    Chen J, Sheng K, Luo P, Li C, Shi G (2012) Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv Mater 24(33):4569–4573CrossRefGoogle Scholar
  32. 32.
    Li H, Yu K, Fu H, Guo B, Lei X, Zhu Z (2015) MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries. J Phys Chem C 119(14):7959–7968CrossRefGoogle Scholar
  33. 33.
    Chao Y, Jalili R, Ge Y, Wang C, Zheng T, Shu K, Wallace GG (2017) Self-assembly of flexible free-standing 3D porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv Funct Mater 27(22).  https://doi.org/10.1002/adfm.201700234
  34. 34.
    Wang S, Tu J, Yuan Y, Ma R, Jiao S (2016) Sodium modified molybdenum sulfide via molten salt electrolysis as an anode material for high performance sodium-ion batteries. Phys Chem Chem Phys 18(4):3204–3213CrossRefGoogle Scholar
  35. 35.
    Zhen M, Zhen X, Liu L (2017) Mesoporous nanoplate TiO2/reduced graphene oxide composites with enhanced lithium storage properties. Mater Lett 193:150–153CrossRefGoogle Scholar
  36. 36.
    Xu X, Fan Z, Yu X, Ding S, Yu D, Lou XWD (2014) A nanosheets-on-channel architecture constructed from MoS2 and CMK-3 for high-capacity and long-cycle-life lithium storage. Adv Energy Mater 4(17).  https://doi.org/10.1002/aenm.201400902

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous MaterialsTianjin University of TechnologyTianjinChina

Personalised recommendations