Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 10, pp 3009–3013 | Cite as

Electrochemical and degradation study of Sr0.6Na0.4SiO3-δ

  • Kapil Sood
  • Jyoti Kaswan
  • Surinder P. Singh
  • Truls Norby
  • Suddhasatwa Basu
Original Paper
  • 106 Downloads

Abstract

The high ionic conductivity of Na-doped SrSiO3 (SNS) is a topic of interest due to contradictory reports on its conductivity and stability by various groups. From a recent NMR study, it is proposed that Na+ is mainly responsible for ionic conductivity in an amorphous Na2Si2O5 phase present in SNS. The present study further extends to determine experimentally the ion transport number as well as material characteristics after long time annealing at 600 °C. The conductivity behavior of as-sintered and annealed nominally Sr0.6Na0.4SiO3-δ is investigated and a sharp fall (~ 2 order magnitude) of the same at 800 °C is found. An XPS study is included for comprehensive understanding of conductivity and degradation behavior of SNS material. On basis of the collective results, we propose a rational description of the conduction and material degradation of SNS.

Keywords

SrSiO3 Transport number SOFC Ionic conductivity Protonic conductivity 

Notes

Acknowledgements

We gratefully acknowledge helpful conversations on XPS analysis with Dr. Ajay K. Shukla, Scientist, National Physical Laboratory, New Delhi, India.

Funding information

The authors are thankful to the financial support of the EU ERA-NET and DST for New INDIGO Project “Multi-Functional Nanocomposite Materials for Low-temperature Ceramic Fuel Cells (NANOMFC)”, the Science and Engineering Research Board (SERB), DST, New Delhi, wide letter number PDF/2016/002473, and the Research Council of Norway (project no. 237642).

References

  1. 1.
    Singh P, Goodenough JB (2012) Sr1−xKxSi1−yGeyO3−0.5x: a new family of superior oxide-ion conductors. Energy Environ Sci 5(11):9626–9631CrossRefGoogle Scholar
  2. 2.
    Singh P, Goodenough JB (2013) Monoclinic Sr1−xNaxSiO3−0.5x: new superior oxide ion electrolytes. J Am Chem Soc 135(27):10149–10154CrossRefPubMedGoogle Scholar
  3. 3.
    Martinez-Coronado R, Singh P, Alonso-Alonso J, Goodenough JB (2014) Structural investigation of the oxide-ion electrolyte with SrMO3 (M = Si/Ge) structure. J Mater Chem A 2(12):4355–4360CrossRefGoogle Scholar
  4. 4.
    Xu J, Wang X, Fu H, Brown CM, Jing X, Liao F, Lu F, Li X, Kuang X, Wu M (2014) Solid-state 29 Si NMR and neutron-diffraction studies ofSr0.7K0.3SiO2.85 oxide ion conductors. Inorg Chem 53(13):6962–6968CrossRefPubMedGoogle Scholar
  5. 5.
    Bayliss RD, Cook SN, Fearn S, Kilner JA, Greaves C, Skinner SJ (2014) On the oxide ion conductivity of potassium doped strontium silicates. Energy Environ Sci 7(9):2999–3005CrossRefGoogle Scholar
  6. 6.
    Evans IR, Evans JSO, Davies HG, Haworth AR, Tate ML (2014) On Sr1−xNaxSiO3-0.5x new superior fast ion conductors. Chem Mater 26(18):5187–5189CrossRefGoogle Scholar
  7. 7.
    Bayliss RD, Cook SN, Scanlon DO, Fearn S, Cabana J, Greaves C, Kilner JA, Skinner SJ (2014) Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory. J Mater Chem A 2(42):17919–17924CrossRefGoogle Scholar
  8. 8.
    Tealdi C, Malavasi L, Uda I, Ferrara C, Berbenni V, Mustarelli P (2014) Nature of conductivity in SrSiO3-based fast ion conductors. Chem Commun 50(94):14732–14735CrossRefGoogle Scholar
  9. 9.
    Jee Y, Zhao X, Huang K (2015) On the cause of conductivity degradation in sodium strontium silicate ionic conductor. Chem Commun 51(47):9640–9642CrossRefGoogle Scholar
  10. 10.
    Peet JR, Widdifield CM, Apperley DC, Hodgkinson P, Johnson MR, Evans IR (2015) Na+ mobility in sodium strontium silicate fast ion conductors. Chem Commun 51(96):17163–17165CrossRefGoogle Scholar
  11. 11.
    Jee Y, Zhao X, Lei X, Huang K (2016) Phase relationship and ionic conductivity in Na-SrSiO3 ionic conductor. J Am Ceram Soc 99(1):324–331CrossRefGoogle Scholar
  12. 12.
    Sood K, Basu S (2016) Co-existence of amorphous and crystalline phases in Na-doped SrSiO3 system. RSC Adv 6(24):20211–20218CrossRefGoogle Scholar
  13. 13.
    Chien P-H, Jee Y, Huang C, Dervişoğlu R, Hung I, Gan Z, Huang K, Hu YY (2016) On the origin of high ionic conductivity in Na-doped SrSiO3. Chem Sci 7(6):3667–3675CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Inglis KK, Corley JP, Florian P, Cabana J, Bayliss RD, Blanc F (2016) Structure and sodium ion dynamics in sodium strontium silicate investigated by multinuclear solid-state NMR. Chem Mater 28(11):3850–3861CrossRefGoogle Scholar
  15. 15.
    Rao PL, Pahari B, Shivanand M, Shet T, Ramanathan KV (2017) NMR investigations unveil phase composition−property correlations in Sr0.55Na0.45SiO2.775 fast ion conductor. Solid State Nucl Magn Reson 84:204–209CrossRefPubMedGoogle Scholar
  16. 16.
    Lei X, Jee Y, Huang K (2015) Amorphous Na2Si2O5 as a fast Na+ conductor: an ab initio molecular dynamics simulation. J Mater Chem A 3(39):19920–19927CrossRefGoogle Scholar
  17. 17.
    Pandey A, Chanda UK, Besra L, Sahu KK, Roy A, Pati S (2018) Identification of phase in-homogeneities in Na-SrSiO3 electrolytes for low temperature SOFCs. J Electroceram 40(1):50–56CrossRefGoogle Scholar
  18. 18.
    Pandey R, Viviani M, Singh P, Botter R, Carpanese MP, Barbucci A, Presto S (2018) The effect of synthesis and thermal treatment on phase composition and ionic conductivity of Na-doped SrSiO3. Solid State Ionics 314:172–177CrossRefGoogle Scholar
  19. 19.
    Wagner C (1933) Theory of the tarnishing process. Z Phys Chem B21:25–41Google Scholar
  20. 20.
    Norby T (1988) EMF method determination of conductivity contributions from protons and other foreign ions in oxides. Solid State Ionics 28–30:1586–1159CrossRefGoogle Scholar
  21. 21.
    Sutija DP, Norby T, Björnbom P (1995) Transport number determination by the concentration-cell/open-circuit voltage method for oxides with mixed electronic, ionic and protonic conductivity. Solid State Ionics 77:167–174CrossRefGoogle Scholar
  22. 22.
    El Kazzi M, Delhaye G, Merckling C et al (2007) Epitaxial growth of SrO on Si(001): chemical and thermal stability. J Vac Sci Technol A 25(6):1505–1511CrossRefGoogle Scholar
  23. 23.
    Kirsch PD, Ekerdt JG (2001) Interfacial chemistry of the Sr/SiOxNy/Si(100) nanostructure. J Vac Sci Technol A 19(5):2222–2231CrossRefGoogle Scholar
  24. 24.
    Delhaye G, El KM, Gaillard S et al (2006) Formation of epitaxial strontium oxide and silicate on silicon (001). J Phys IV France 132:285–289CrossRefGoogle Scholar
  25. 25.
    Nesbitt HW, Bancroft GM, Henderson GS, Ho R, Dalby KN, Huang Y, Yan Z (2011) Bridging, non-bridging and free (O2−) oxygen in Na2O-SiO2 glasses: an X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study. J Non-Cryst Solids 357(1):170–180CrossRefGoogle Scholar
  26. 26.
    Gassenbauer Y, Schafranek R, Klein A et al (2006) Surface states, surface potentials, and segregation at surfaces of tin-doped In2O3. Phys Rev B Condens Matter Mater Phys 73:1–11CrossRefGoogle Scholar
  27. 27.
    Klein A, Dieker H, Spath B et al (2008) Changes in electronic structure and chemical bonding upon crystallization of the phase change material GeSb2Te4. Phys Rev Lett 100:1–4CrossRefGoogle Scholar
  28. 28.
    Jovanović Z, Spreitzer M, Kovač J, Klement D, Suvorov D (2014) Silicon surface deoxidation using strontium oxide deposited with the pulsed laser deposition technique. ACS Appl Mater Interfaces 6(20):18205–18214CrossRefPubMedGoogle Scholar
  29. 29.
    Ching WY, Murray RA, Lam DJ, Veal BW (1983) Comparative studies of electronic structures of sodium metasilicate and a and P phases of sodium disilicate. Phys Rev B 28(8):4724–4735CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kapil Sood
    • 1
    • 2
  • Jyoti Kaswan
    • 3
  • Surinder P. Singh
    • 3
  • Truls Norby
    • 2
  • Suddhasatwa Basu
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology, DelhiNew DelhiIndia
  2. 2.Department of ChemistryUniversity of Oslo, FERMiOOsloNorway
  3. 3.National Physical LaboratoryCouncil of Scientific and Industrial ResearchNew DelhiIndia

Personalised recommendations