Skip to main content

Advertisement

Log in

Fabrication and characterization of microtubular solid oxide cell supported with nanostructured mixed conducting perovskite fuel electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Mixed ionic and electronic conducting (MIEC) perovskites demonstrate advantages over Ni-cermet as fuel electrode materials for solid oxide cells (SOCs). However, SOCs are primarily electrolyte-supported planar designs in literature when MIEC perovskite fuel electrodes are employed, which are relatively easy to fabricate but usually have high electrolyte ohmic resistance. Perovskite fuel electrode-supported designs are rarely studied particularly for microtubular SOCs. In this research, (La0.3Sr0.7)0.9Ti0.9Ni0.1O3-δ-Sm0.2Ce0.8O1.9 (LSTN-SDC) electrode-supported microtubular cell LSTN-SDC/YSZ/(La0.8Sr0.2)0.95MnO3-δ is fabricated and characterized. The LSTN-SDC microtubular substrate is prepared using an in-house built spinneret extrusion system in combination with modified phase inversion method, featuring radially well-aligned microchannels open at the inner surface. A thin YSZ electrolyte of ~15 μm and (La0.8Sr0.2)0.95MnO3-δ electrode of ~25 μm are then fabricated on the substrate, respectively. Upon reducing treatment, nickel is exsolved from LSTN grains and uniformly decorated onto grain surface as Ni nanoparticles, and therefore on inner surface of microchannels in the substrate. With CO/CO2 gas mixture as the fuel, the complicated electro-/chemical reactions are identified in the substrate electrode. The electrolysis process in combination with surface catalytic process of nanostructured electrode substrate leads to highly efficient CO production from CO2 with conversion efficiencies of well above 100%. The electrolysis also facilitates to regenerate surface catalytic functionality of nanostructured electrode substrate. The redox stability advantages of the cell are demonstrated in both alternative reduction (CO)/oxidation (air) atmospheric conditions and reversible operating mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ormerod RM (2003) Chemical Society Review 32(1):17–28

    Article  CAS  Google Scholar 

  2. Minh N (2004) Solid State Ionics 174(1-4):271–277

    Article  CAS  Google Scholar 

  3. Zhan Z, Barnett SA (2005) Science 308(5723):844–847

    Article  CAS  PubMed  Google Scholar 

  4. Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M (2009) Science 326(5949):126–129

    Article  CAS  PubMed  Google Scholar 

  5. Torrell M, García-Rodríguez S, Morata A, Penelas G, Tarancón A (2015) Faraday Discuss 182:241–255

    Article  CAS  PubMed  Google Scholar 

  6. Xie K, Zhang Y, Meng G, Irvine JTS (2011) Energy Environ Sci 4(6):2218–2222

    Article  CAS  Google Scholar 

  7. Goodliff KE, Troutman P, Craig DA, Caram J, Herrmann N (2016) AIAA SPACE 2016–5456

  8. Sanders GB, Paz A, Oryshchyn L, Araghi K, Muscatello A, Linne DL, Kleinhenz JE, Peters T (2015) AIAA SPACE 2015 Conference and Exposition, AIAA 2015–4458

  9. Kleinhenz JE, Paz A (2017) 10th Symposium on Space Resource Utilization, AIAA 2017–0423

  10. Rapp D, Hoffman JA, Hecht M (2015) AIAA SPACE 2015 Conference and Exposition, AIAA 2015–4561

  11. Xie Y, Xue X (2013) J Power Sources 241:718–727

    Article  CAS  Google Scholar 

  12. Xie Y, Xue X (2012) Solid State Ionics 224:64–73

    Article  CAS  Google Scholar 

  13. Zekri HK, Knipper M, Parisi J, Plaggenborg T (2017) Fuel Cells 17(3):359–366

    Article  CAS  Google Scholar 

  14. Ma J, Jiang C, Connor PA, Cassidy M, Irvine JTS (2015) J Mater Chem A 3(37):19068–19076

    Article  CAS  Google Scholar 

  15. Tao S, Irvine JTS (2003) Nat Mater 2(5):320–323

    Article  CAS  PubMed  Google Scholar 

  16. Huang YH, Dass RI, Xing XL, Goodenough JB (2006) Science 312(5771):254–257

    Article  CAS  PubMed  Google Scholar 

  17. Sengodan S, Choi S, Jun A, Shin TH, Ju YW, Jeong HY, Shin J, Irvine JTS, Kim G (2015) Nat Mater 14(2):205–209

    Article  CAS  PubMed  Google Scholar 

  18. Dong G, Yang C, He F, Jiang Y, Ren C, Gan Y, Lee M, Xue X (2017) RSC Adv 7(37):22649–22661

    Article  CAS  Google Scholar 

  19. Atkinson A, Barnett SA, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Nat Mater 3(1):17–27

    Article  CAS  PubMed  Google Scholar 

  20. Kang LS, Park JL, Lee S, Jin YH, Hong HS, Lee CG, Kim BS (2014) J Nanosci Nanotechnol 14(12):8974–8977

    Article  CAS  PubMed  Google Scholar 

  21. Zhan Z, Bierschenk DM, Cronin JS, Barnett SA (2011) Energy Environ Sci 4:3951–3954

    Article  CAS  Google Scholar 

  22. Miller EC, Sherman Q, Gao Z, Voorhees PW, Barnett SA (2015) ECS Trans 68(1):1245–1254

    Article  CAS  Google Scholar 

  23. Tsekouras G, Neagu D, Irvine JTS (2013) Energy Environ Sci. 6:256–266

    Article  CAS  Google Scholar 

  24. Oh TS, Rahani EK, Neagu D, Irvine JTS, Shenoy VB, Gorte RJ, Vohs JM (2015) J Phys Chem Lett 6(24):5106–5110

    Article  CAS  PubMed  Google Scholar 

  25. Huang YH, Liang G, Croft M, Lehtimaki M, Karppinen M, Goodenough JB (2009) Chem Mater 21(11):2319–2326

    Article  CAS  Google Scholar 

  26. Bastidas DM, Tao S, Irvine JTS (2006) J Mater Chem 16(17):1603–1605

    Article  CAS  Google Scholar 

  27. Ding D, Li X, Lai SY, Gerdes K, Liu M (2014) Energy Environ Sci 7:552–575

    Article  CAS  Google Scholar 

  28. Ding H, Ge J, Xue X (2012) Electrochemical and Solid State Letters 15(6):B86–B89

    Article  CAS  Google Scholar 

  29. Ren C, Gan Y, Lee M, Yang C, He F, Jiang Y, Dong G, Green RD, Xue X (2016) J Electrochem Soc 163(9):F1115–F1123

    Article  CAS  Google Scholar 

  30. Ren C, Gan Y, Yang C, Lee M, Dong G, Xue X (2017) J Electrochem Soc 164(7):F722–F731

    Article  CAS  Google Scholar 

  31. Shi J, Xue X (2014) J Appl Electrochem 44(6):683–694

    Article  CAS  Google Scholar 

  32. He F, Jin X, Tian T, Ding H, Green RD, Xue X (2015) J Electrochem Soc 162(9):F951–F958

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Early Stage Innovations grant #NNX14AB26G under NASA’s Space Technology Research Grants Program and partially supported by the US Department of Energy through National Energy Technology Laboratory under grant number DE-FE0024059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjian Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Y., Ren, C., Lee, M. et al. Fabrication and characterization of microtubular solid oxide cell supported with nanostructured mixed conducting perovskite fuel electrode. J Solid State Electrochem 22, 2929–2943 (2018). https://doi.org/10.1007/s10008-018-3997-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3997-9

Keywords

Navigation