Skip to main content
Log in

An optimization and fast load-oriented control for current-based solid oxide fuel cell system

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

One of the key problems for a solid oxide fuel cell (SOFC), which is a high-temperature power-generation plant, is the cooperative control of safe operation and system efficiency during load tracking. Within the constraints of thermal safety, the SOFC plant should have the maximum output efficiency under various static conditions. Moreover, the SOFC system can switch between different static working conditions smoothly, safely, and quickly when the external load power changes. To achieve cooperative thermoelectric control, taking a 5-kW stand-alone SOFC system as the research object, according to the optimal static strategy designed based on the optimal operating curves (OOCs), a sliding mode controller (SMC) is designed and the closed-loop responses are discussed for SOFC system power switching during load tracking. The identification results demonstrate that the electrical coupling dynamic model can depict and predict accurately the electrical characteristics of SOFC stacks. And based on the obtained OOCs, the thermoelectric control can be achieved and thermal safety ensured using the designed SMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AR :

air excess ratio [−]

BP :

bypass valve opening ratio [−]

C :

specific heat capacity [kJ kmol−1 K−1]

E 0 :

standard electrode potential (V)

FU :

fuel utilization [−]

F :

Faraday’s constant [96,485 C mol−1]

h :

convective heat transfer coefficient [kW cm−2 K−1]

I :

current [A]

LHV :

low heat value [kJ]

Max. |ΔT PEN|:

maximum PEN temperature gradient [K cm−1]

Max. T PEN :

maximum PEN temperature [K]

N :

control volume mole number [kmol]

\( \dot{N} \) :

molar flow rate [kmol s−1]

N 0 :

number of fuel cells [−]

p :

pressure [bar]

k :

thermal conductivity [kW cm−1 K−1]

P :

power [kW]

\( \dot{Q} \) :

heat transfer [kW]

R :

universal gas constant [8.314 kJ kmol−1 K−1]

A :

surface area [cm2]

T :

temperature [K]

U :

voltage [V]

\( \dot{W} \) :

work [W]

X :

species mole fraction

L :

distance between control volume [cm]

C D :

current density [A cm−2]

i 0 :

exchange current [A cm−2]

S node :

area of each node [cm2]

LSM:

lanthanum strontium manganate

j :

the index of discretization units of the cell

J :

the user-defined number of cell nodes

τ :

effectiveness

γ :

specific heat ratio, 1.4

δ :

number of electrons participating in the electro-chemical reaction

α :

charge transfer coefficient, 0.5

ε :

specified tolerance constant, 1e−5

η :

efficiency [%]

amb:

ambient

act:

activation

B:

burner

bl:

blower

by:

bypass

con:

concentration

dl:

diagonal line

i :

species

in:

inlet

out:

outlet

net:

system net output power

s:

stack

v:

volume

so:

solid control volume

ga:

gas control volume

ca:

cathode

an:

anode

PEN:

positive electrode-electrolyte-negative electrode

References

  1. Minh NQ, Takahashi T (1995) Sci Technol of Ceramic Fuel Cell Elsevier, Amsterdam

  2. Vielstich W, Yokokawa H, Gasteiger HA (2009) Handbook of fuel cells: fundamentals technology and applications. John Wiley &Sons

  3. Qi Y, Huang B, Luo J (2006) Dynamic modeling of a finite volume of solid oxide fuel cell: the effect of transport dynamics. Chem Eng Sci 61(18):6057–6076

    Article  CAS  Google Scholar 

  4. Rees NV, Compton RG (2011) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electrochem 15(10):2095–2100

    Article  CAS  Google Scholar 

  5. Dillig M, Plankenbühler T, Karl J (2018) Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming. J Power Sources 373:139–149

    Article  CAS  Google Scholar 

  6. Zhang T, Feng G (2009) Rapid load following of an SOFC power system via stable fuzzy predictive tracking controller. IEEE Trans Fuzzy Syst 17(2):357–371

    Article  Google Scholar 

  7. Hames Y, Kaya K, Baltacioglu E, Turksoy A (2018) Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int J Hydrog Energy Doi: https://doi.org/10.1016/j.ijhydene.2017.12.150

  8. Stiller C, Thorud B, Bolland O, Kandepu R, Imsland L (2006) Control strategy for a solid oxide fuel cell and gas turbine hybrid system. J Power Sources 158(1):303–315

    Article  CAS  Google Scholar 

  9. Jia Z, Sun J, Oh SR, Dobbs H, King J (2013) Control of the dual mode operation of generator/motor in SOFC/GT-based APU for extended dynamic capabilities. J Power Sources 235:172–180

    Article  CAS  Google Scholar 

  10. M. F (2008) The dynamics and control of integrated solid oxide fuel cell systems: transient load-following and fuel disturbance rejection. Ph.D Thesis, University of California, Irvine

  11. Wang YZ, Yu J, Weng S (2011) Numerical investigation of different loads effect on the performance of planar electrode supported SOFC with syngas as fuel. Int J Hydrog Energy 36(9):5624–5631

    Article  CAS  Google Scholar 

  12. Barelli L, Bidini G, Gallorini F, Ottaviano PA (2013) Design optimization of a SOFC-based CHP system through dynamic analysis. Int J Hydrog Energy 38(1):354–369

    Article  CAS  Google Scholar 

  13. Xi HD (2007) Dynamic modeling and control of planar SOFC power system. Ph.D Thesis, University of Michigan, Ann Arbor

  14. Padulles J, Ault GW, McDonald JR (2000) An integrated SOFC plant dynamic model for power systems simulation. J Power Sources 86(1-2):495–500

    Article  CAS  Google Scholar 

  15. Xie Y, Xue X (2009) Transient modeling of anode-supported solid oxide fuel cells. Int J Hydrog Energy 34(16):6882–6891

    Article  CAS  Google Scholar 

  16. Kazempoor P, Dorer V, Ommi F (2009) Evaluation of hydrogen and methane-fuelled solid oxide fuel cell systems for residential applications: system design alternative and parameter study. Int J Hydrog Energy 34(20):8630–8644

    Article  CAS  Google Scholar 

  17. Cao H, Li X, Deng Z, Li J, Qin Y (2013) Thermal management oriented steady state analysis and optimization of a kW scale solid oxide fuel cell stand-alone system for maximum system efficiency. Int J Hydrog Energy 38(28):12404–12417

    Article  CAS  Google Scholar 

  18. Wu X, Ye Q, Wang J (2017) A hybrid prognostic model applied to SOFC prognostics. Int J Hydrog Energy 42(39):25008–25020

    Article  CAS  Google Scholar 

  19. Murshed AM, Huang B, Nandakumar K (2007) Control relevant modeling of planer solid oxide fuel cell system. J Power Sources 163(2):830–845

    Article  CAS  Google Scholar 

  20. Mueller F, Brouwer J, Jabbari F, Samuelsen S (2006) Dynamic simulation of an integrated solid oxide fuel cell system including current-based fuel flow control. J Fuel Cell Sci Technol 3(2):144–154

    Article  CAS  Google Scholar 

  21. Komatsu Y, Brus G, Kimijima S, Szmyd J (2014) The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage. Appl Energy 115:352–359

    Article  CAS  Google Scholar 

  22. Zhang L, Li X, Jiang JH, Li SH, Yang J, Li J (2015) Dynamic modeling and analysis of a 5-kW solid oxide fuel cell system from the perspectives of cooperative control of thermal safety and high efficiency. Int J Hydrog Energy 40(1):456–476

    Article  CAS  Google Scholar 

  23. Zhang L, Jiang J, Cheng H, Deng ZH, Li X (2015) Control strategy for power management, efficiency-optimization and operating-safety of a 5-kW solid oxide fuel cell system. Electrochim Acta 177:237–249

    Article  CAS  Google Scholar 

  24. Bao C, Wang Y, Feng D, Jiang Z, Zhang X (2018) Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system. Prog Energy Combust Sci 66:83–140

    Article  Google Scholar 

  25. Ramadhani F, Hussain MA, Mokhlis H, Hajimolana S (2017) Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: a literature survey. Renew Sust Energ Rev 76:460–484

    Article  Google Scholar 

  26. Papurello D, Iafrate C, Lanzini A, Santarelli M (2017) Trace compounds impact on SOFC performance: experimental and modelling approach. Appl Energy 208:637–654

    Article  CAS  Google Scholar 

  27. Wang Y, Gu L, Gao M, Zhu K (2016) Multivariable output feedback adaptive terminal sliding mode control for underwater vehicles. Asian J Control 18(1):247–265

    Article  Google Scholar 

  28. Utkin V, Guldner J, Shi J, Ge S, Lewis F (2009) Sliding mode control in electro-mechanical systems, Second Edition. Boca Raton: CRC Press

Download references

Funding

The work was supported by the open fund project of Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System (No. znxx2018ZD02), the basic research project of Shenzhen (JCYJ20170307160923202), and the National Natural Science Foundation of China (61573162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Li.

Appendix

Appendix

Detailed expressions of SOFC operating parameters, thermal temperature constraints, and electrical outputs.

Operating parameters

$$ {\displaystyle \begin{array}{c} FU=\frac{N_0\times {I}_s}{2F\times {\dot{N}}_{H_2}}\\ {} AR=\frac{4F\times {X}_{O_2}{\dot{N}}_{air}}{N_0\times {I}_s}\\ {} BP=\frac{4F\times {X}_{O_2}{\dot{N}}_{air, by}}{N_0\times {I}_s\times AR}\end{array}} $$

Thermal temperature constraints

$$ {\displaystyle \begin{array}{c}\mathit{\operatorname{Max}}.\left|{\varDelta T}_{PEN}\right|=\mathit{\max}\left\{{T}_{PEN}\left(j+ 1\right)-{T}_{PEN}(j)\right\},\kern1.25em \left\{j= 1, 2,\dots N- 1\right\}\\ {}\mathit{\operatorname{Max}}.{T}_{PEN}=\mathit{\max}\left\{{T}_{PEN}(j)\right\},\kern1.5em \left\{j= 1, 2,\dots N- 1\right\}\\ {}{\varDelta T}_{inlet}=\left|{T}_{HE, air}-{T}_{HE, fuel}\right|\end{array}} $$

Electrical outputs

$$ {\displaystyle \begin{array}{c}{P}_{bl}=-{\frac{1}{\tau_{bl}}}^{\ast}\frac{{\gamma RT}_{amb}}{\gamma - 1}\left[{\left(\frac{p_{out}}{p_{amb}}\right)}^{\left(\gamma - 1\right)/\gamma }- 1\right]{\dot{N}}_{air}\\ {}{P}_{net}={U}_s{I}_s-{P}_{bl}\\ {} SE=\frac{U_s{I}_s-{P}_{bl}}{{\dot{N}}_{H_2}\ast {LHV}_{H_2}}\times 100\%\end{array}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Shi, S., Jiang, J. et al. An optimization and fast load-oriented control for current-based solid oxide fuel cell system. J Solid State Electrochem 22, 2863–2877 (2018). https://doi.org/10.1007/s10008-018-3996-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3996-x

Keywords

Navigation