Skip to main content
Log in

Lithium ion conductivity of solid solutions based on Li8ZrO6

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 17 July 2018

This article has been updated

Abstract

Lithium ion conductivity of lithium hexaoxozirconate Li8ZrO6 doped by Mg2+, Sr2+, Nb5+, V5+, and Ce4+ cations was studied using impedance spectroscopy. The NMR data indicate that in the low-temperature region, lithium ion migration takes place by exchange of Li+ among tetra- and octahedral positions. Data of Raman spectroscopy suggest that the potential reason for the sharp increase of Li8ZrO6 and its solid solutions’ conductivity near 700 K may be melting of LiOH which occurs as a result of interaction between samples and atmospheric moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 17 July 2018

    The authors are grateful to A. L. Buzlukov and I. Y. Arapov for performing the 7Li NMR experiments.

References

  1. Cao С, Li ZB, Wang XL, Zhao XB, Han WQ (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 2. https://doi.org/10.3389/fenrg.2014.00025

  2. Dumon A, Huang M, Shen Y, Nan CW (2013) High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ionics 243:36–41

    Article  CAS  Google Scholar 

  3. Hong HY-P (1978) Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater Res Bull 13(2):117–124

    Article  CAS  Google Scholar 

  4. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027

    Article  CAS  Google Scholar 

  5. Fu J (1997) Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5. Solid State Ionics 104(3-4):191–194

    Article  CAS  Google Scholar 

  6. Hellstrom EE, Gool van W (1981) Li ion conduction in Li2ZrO3, Li4ZrO4, and LiScO2. Solid State Ionics 2(1):59–64

    Article  CAS  Google Scholar 

  7. Moiseev GK, Vatolin NA (2003) Interaction of lithium zirconate with lithium under equilibrium conditions. Dokl Phys Chem 388(4/6):33–37

    Article  CAS  Google Scholar 

  8. Delmas C, Maazaz A, Guillen F, Fouassier C, Reau JM, Hagenmuller P (1979) Des conducteurs ioniques pseudo-bidimensionnels: Li8MO6 (M = Zr, Sn), Li7LO6 (L = Nb, Ta) et Li6In206. Mat Res Bull 14(5):619–625

    Article  CAS  Google Scholar 

  9. Pantyukhina MI, Shchelkanova MS, Stepanov AP, Buzlukov AL (2010) Investigation of ion transport in Li8ZrO6 and Li 6Zr2O7 solid electrolytes. Bull Russ Acad Sci: Phys 74(5):653–655

    Article  Google Scholar 

  10. Shchelkanova MS, Pantyukhina MI, Kalashnova AV, Plaksin SV (2016) Electrochemical properties of Li8 − 2xMxZrO6 (M = Mg, Sr) solid electrolytes. Solid State Ionics 290:12–17

    Article  CAS  Google Scholar 

  11. Shchelkanova МS, Pantyukhina MI, Antonov BD, Kalashnova AV (2014) Produce new solid electrolytes based on the Li8-xZr1-xVxO6. Butlerov Commun (in Russian) 38:96–102

    Google Scholar 

  12. Pantyukhina MI, Shchelkanova МS, Plaksin SV (2013) Synthesis and electrochemical properties of Li8-xZr1-xNbxO6 solid solutions. Phys Solid State 55(4):707–709

    Article  CAS  Google Scholar 

  13. Andreev OL, Pantyukhina MI, Martem'yanova ZS, Batalov NN (2003) Ionic conductivity and thermodynamic properties of solid electrolytes based on lithium orthozirconate. Electrochemical Energetic 3:86–90 (in Russian)

    Google Scholar 

  14. Pantyukhina MI, Andreev OL, Martem'yanova ZS, Batalov NN (2004) Cation conductivity of Li8ZrO6–LiYO2 solid solutions. Inorg Mater 40(4):404–406

    Article  CAS  Google Scholar 

  15. Huang S, Fang Y, Wang B, Wilson BE, Tran N, Truhlar DG, Stein A (2016) Conduction and surface effects in cathode materials: Li8ZrO6 and doped Li8ZrO6. J Phys Chem C 120(18):9637–9649

    Article  CAS  Google Scholar 

  16. Pantyukhina MI, Shchelkanova МS, Plaksin SV (2013) Electrochemical properties of solid solutions in the Li8Zr1-xCexO6 system. Russ J Electrochem 49(2):144–148

    Article  CAS  Google Scholar 

  17. Pantyukhina MI, Shchelkanova МS, Plaksin SV (2010) Ionic conduction of Li8 - 2x Mg x ZrO6 solid solutions. Russ J Electrochem 46:831–834

    Article  CAS  Google Scholar 

  18. Pantyukhina MI, Shchelkanova МS, Plaksin SV (2012) Ionic conductivity of Li8-2xSrxZrO6. Inorg Mater 48(4):382–385

    Article  CAS  Google Scholar 

  19. PDF2 (JCPDS-ICCD) (Joint committee of powder diffraction standards)

  20. Raistrick ID, Ho C, Huggins AR (1976) Lithium ion conduction in LiAlO4, Li5GaO4, and Li6ZnO4. Mater Res Bull 11(8):953–958

    Article  CAS  Google Scholar 

  21. Ramdani A, Brice JF (1981) Etude des proprietes de conduction electrique du Ferrite Li5FeO4. Ann Chim 6:569–578

    CAS  Google Scholar 

  22. Nagano N, Greenblatt M (1987) Structural and electrical properties of Li5TlO4. Solid State Ionics 24(2):169–174

    Article  CAS  Google Scholar 

  23. Muhle C, Dinnebier RE, van Wullen L, Schwering G, Jansen M (2004) New insights into the structural and dynamical features of lithium hexaoxometalates Li7MO6 (M = Nb, Ta, Sb, Bi). Inorg Chem 43(3):874–881

    Article  CAS  PubMed  Google Scholar 

  24. Ohno H, Konishi S, Nagasaki T, Kurasawa T, Katsuta H, Watanabe H (1985) Electrical conductivity of a sintered pellet of octalithium zirconate. J Nucl Mat 132(3):222–230

    Article  CAS  Google Scholar 

  25. Biefeld RM, Johnson RT (1979) The effects of Li2SO4 addition, moisture, and LiOH on the ionic conductivity of Li5AIO4. J Solid State Chem 29(3):393–399

    Article  CAS  Google Scholar 

  26. Johnson RT, Biefeld RM (1979) Ionic conductivity of Li5AlO4 and Li5GaO4 in moist air environments: potential humidity sensors. Mat. Res. Bull. 14(4):537–542

    Article  CAS  Google Scholar 

  27. Pantyukhina MI, Andreev OL, Antonov BD, Batalov NN (2002) Synthesis and electrical properties of lithium zirconates. Russ J Inorg Chem 47:1630–1633

    Google Scholar 

  28. Scholder R, Räde D, Schwarz H (1968) Uber Zirkonate, Hafnate und Thorate von Barium, Strontium, Lithium und Natrium. Z Anorg Allg Chem Bd 362(3-4):149–168

    Article  CAS  Google Scholar 

  29. Charton S, Maupoix C, Delaunay F, Saviot L, Bernard F (2016) Experimental investigation on lithium hydride hydrolysis. Thesis, Lyon (France), WHEC16

  30. Brooker MH, Bates JB (1971) Raman and infrared spectral studies of anhydrous Li2CO3 and Na2CO3. J Chem Phys 54(11):4788–4791

    Article  CAS  Google Scholar 

  31. Harbach F, Ficher F (1975) Raman spectra of lithium hydroxide single crystals. J Phys Cha Solids 36:60l–603l

    Google Scholar 

  32. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

  33. Johnson RT, Biefeld RM, Keck JD (1977) Ionic conductivity in Li5AlO4 and LiOH. Mat Res Bull 12(6):577–587

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to S.V. Plaksin and E.G. Vovkotrub. The research has been carried out with the equipment of the Shared Access Center “Composition of Compounds” of the Institute of High-Temperature Electrochemistry of Ural Branch of RAS, Yekaterinburg, Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariya S. Shchelkanova.

Additional information

Highlights

Li8ZrO6 doped by M2+, A5+, and Ce4+ was studied using impedance, Raman study, and NMR. The maximum conductivity (9 × 10-6 S cm−1 at 476 К) is observed for Li7.98Zr0.98V0.02O6. Below 700 K, Li+ ions move via jumps between octahedral and tetrahedral positions. In all cases, conductivity shows a jump-like rise at 680–710 K. One of the reasons for a jump of conductivity near 700 K may be the melting of LiOH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchelkanova, M.S., Shekhtman, G.S., Kalashnova, A.V. et al. Lithium ion conductivity of solid solutions based on Li8ZrO6. J Solid State Electrochem 22, 2959–2964 (2018). https://doi.org/10.1007/s10008-018-3993-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3993-0

Keywords

Navigation