Skip to main content

Advertisement

Log in

Magnesium hexakis(methanol)-dinitrate complex electrolyte for use in rechargeable magnesium batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Functional compatible electrolyte with Mg2+ intercalation cathodes represents one of the largest obstacles in the development of practical Mg batteries MBs. In current work, we report for the first time magnesium hexakis(methanol)-dinitrate complex (MHMD) electrolyte product reaction of 2,2-dimethoxypropane with magnesium nitrate hexahydrate via ‘Solvent-in-Salt’ method. 2,2-Dimethoxypropane as a water scavenger can capture reducible molecules like H2O and dehydrate Mg(NO3)2.6H2O to form magnesium hexakis(methanol)-dinitrate complex. Meanwhile, Mg cloud bonds will become weak—something which frees up the mobility of Mg2+. This electrolyte exhibits high ionic conductivity with low activation energy ~ 0.18 eV. The general aim of the investigation was to demonstrate a potential application of MHMD electrolyte in Mg-ion cell. Mg cells were analyzed with the use of cyclic voltammetry (CV), galvanostatic charging/discharging tests, and electrochemical impedance spectroscopy. A comparative study between different cathodes like V2O5, GeO2, TiO2, and S using MHMD electrolyte was performed. The S cathode has an initial discharge capacity of 370 mAh g−1 and retained a reversible capacity at 60 mAh g−1 after 20 cycles exhibiting better electrochemical performances than those of V2O5, GeO2, and TiO2 cathodes. This work opens up a new pathway to explore new electrolytic materials for MBs with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kang S-J, Lim S-C, Kim H, Heo JW, Hwang S, Jang M, Yang D, Hong S-T, Lee H (2017) Non-Grignard and Lewis acid-free sulfone electrolytes for rechargeable magnesium batteries. Chem Mater 29(7):3174–3180

    Article  CAS  Google Scholar 

  2. Shterenberg I, Salama M, Gofer Y, Levi E, Aurbach D (2014) The challenge of developing rechargeable magnesium batteries. MRS Bull 39(5):453–460

    Article  CAS  Google Scholar 

  3. Tutusaus O, Mohtadi R, Arthur TS, Mizuno F, Nelson EG, Sevryugina YV (2015) An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew Chem Int Ed 54(27):7900–7904

    Article  CAS  Google Scholar 

  4. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727

    Article  CAS  PubMed  Google Scholar 

  5. Du A, Zhang Z, Qu H, Cui Z, Qiao L, Wang L, Chai J, Lu T, Dong S, Dong T (2017) An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy Environ Sci 10(12):2616–2625

    Article  CAS  Google Scholar 

  6. Samuel D, Steinhauser C, Smith JG, Kaufman A, Radin MD, Naruse J, Hiramatsu H, Siegel DJ (2017) Ion pairing and diffusion in magnesium electrolytes based on magnesium borohydride. ACS Appl Mater Interfaces 9(50):43755–43766

    Article  CAS  PubMed  Google Scholar 

  7. Mohtadi R, Matsui M, Arthur TS, Hwang SJ (2012) Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed 51(39):9780–9783

    Article  CAS  Google Scholar 

  8. Zhao-Karger Z, Bardaji MEG, Fuhr O, Fichtner M (2017) A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J Mater Chem A 5(22):10815–10820

    Article  CAS  Google Scholar 

  9. Ha S-Y, Lee Y-W, Woo SW, Koo B, Kim J-S, Cho J, Lee KT, Choi N-S (2014) Magnesium (II) bis (trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6(6):4063–4073

    Article  CAS  PubMed  Google Scholar 

  10. Yoo HD, Liang Y, Dong H, Lin J, Wang H, Liu Y, Ma L, Wu T, Li Y, Ru Q (2017) Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat Commun 8(1):339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C (2017) Pipe-wire TiO2–Sn@ carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett 17(6):3830–3836

    Article  CAS  PubMed  Google Scholar 

  12. McNulty D, Geaney H, Buckley D, O'Dwyer C (2018) High capacity binder-free nanocrystalline GeO2 inverse opal anodes for Li-ion batteries with long cycle life and stable cell voltage. Nano Energy 43(Supplement C):11–21

    Article  CAS  Google Scholar 

  13. Su D, Wang G (2013) Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7(12):11218–11226

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Guan BY, Zhang J, Lou XWD (2017) A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 1(3):576–587

    Article  CAS  Google Scholar 

  15. Chang C-C, Her L-J, Chen L-C, Lee Y-Y, Liu S-J, Tien H-J (2007) 2, 2-Dimethoxy-propane as electrolyte additive for lithium-ion batteries. J Power Sources 163(2):1059–1063

    Article  CAS  Google Scholar 

  16. Critchfield F, Bishop E (1961) Water determination by reaction with 2, 2-dimethoxypropane. Anal Chem 33(8):1034–1035

    Article  CAS  Google Scholar 

  17. Sa N, Wang H, Proffit DL, Lipson AL, Key B, Liu M, Feng Z, Fister TT, Ren Y, Sun C-J (2016) Is alpha-V 2 O 5 a cathode material for Mg insertion batteries? J Power Sources 323:44–50

    Article  CAS  Google Scholar 

  18. Sinha NN, Munichandraiah N (2008) Electrochemical conversion of LiMn2O4 to MgMn2O4 in aqueous electrolytes. Electrochem Solid-State Lett 11(11):F23–F26

    Article  CAS  Google Scholar 

  19. Zhang H, Ye K, Shao S, Wang X, Cheng K, Xiao X, Wang G, Cao D (2017) Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery. Electrochim Acta 229:371–379

    Article  CAS  Google Scholar 

  20. van Ingen Schenau A, Groeneveld W, Reedijk J (1972) Alcohols as ligands. Part II: metal (II) salts containing coordinated methanol. Recueil des Travaux Chimiques des Pays-Bas 91(1):88–94

    Article  Google Scholar 

  21. Al-Abadleh HA, Grassian V (2003) Phase transitions in magnesium nitrate thin films: a transmission FT-IR study of the deliquescence and efflorescence of nitric acid reacted magnesium oxide interfaces. J Phys Chem B 107(39):10829–10839

    Article  CAS  Google Scholar 

  22. Sulaiman M, Rahman A, Mohamed N (2013) Structural, thermal and conductivity studies of magnesium nitrate–alumina composite solid electrolytes prepared via sol-gel method. Int J Electrochem Sci 8:6647–6655

    CAS  Google Scholar 

  23. Natal-Santiago M, Dumesic J (1998) Microcalorimetric, FTIR, and DFT studies of the adsorption of methanol, ethanol, and 2, 2, 2-trifluoroethanol on silica. J Catal 175(2):252–268

    Article  CAS  Google Scholar 

  24. Chen L, Fan LZ (2018) Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. Energy Storage Mater 15:37–45

    Article  Google Scholar 

  25. Zhang M, MacRae AC, Liu H, Meng YS (2016) Communication—investigation of anatase-TiO2 as an efficient electrode material for magnesium-ion batteries. J Electrochem Soc 163(10):A2368–A2370

    Article  CAS  Google Scholar 

  26. Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough JB (2017) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46:176–184

    Article  CAS  Google Scholar 

  27. Tan C, Farhana N, Saidi NM, Ramesh S, Ramesh K (2018) Conductivity, dielectric studies and structural properties of P (VA-co-PE) and its application in dye sensitized solar cell. Org Electron 56:116–124

    Article  CAS  Google Scholar 

  28. Panero S, Scrosati B, Sumathipala H, Wieczorek W (2007) Dual-composite polymer electrolytes with enhanced transport properties. J Power Sources 167(2):510–514

    Article  CAS  Google Scholar 

  29. Zhao-Karger Z, Zhao X, Wang D, Diemant T, Behm RJ, Fichtner M (2015) Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv Energy Mater 5 (3)

  30. Vinayan B, Zhao-Karger Z, Diemant T, Chakravadhanula VSK, Schwarzburger NI, Cambaz MA, Behm RJ, Kübel C, Fichtner M (2016) Performance study of magnesium–sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nano 8(6):3296–3306

    CAS  Google Scholar 

  31. Li X, Yang Z, Fu Y, Qiao L, Li D, Yue H, He D (2015) Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 9(2):1858–1867

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Cui Z, Qiao L, Guan J, Xu H, Wang X, Hu P, Du H, Li S, Zhou X (2017) Novel design concepts of efficient mg-ion electrolytes toward high-performance magnesium–selenium and magnesium–sulfur batteries. Adv Energy Mater 7(11):1602055–1602065

    Article  CAS  Google Scholar 

  33. Zhou X, Tian J, Hu J, Li C (2018) High rate magnesium–sulfur battery with improved cyclability based on metal–organic framework derivative carbon host. Adv Mater 30(7):1704166–1704172

    Article  CAS  Google Scholar 

  34. Zeng L, Wang N, Yang J, Wang J, NuLi Y (2017) Application of a sulfur cathode in nucleophilic electrolytes for magnesium/sulfur batteries. J Electrochem Soc 164(12):A2504–A2512

    Article  CAS  Google Scholar 

  35. Rui X, Lu Z, Yu H, Yang D, Hng HH, Lim TM, Yan Q (2013) Ultrathin V 2 O 5 nanosheet cathodes: realizing ultrafast reversible lithium storage. Nano 5(2):556–560

    CAS  Google Scholar 

  36. Hou J, Wu R, Zhao P, Chang A, Ji G, Gao B, Zhao Q (2013) Graphene–TiO2 (B) nanowires composite material: synthesis, characterization and application in lithium-ion batteries. Mater Lett 100:173–176

    Article  CAS  Google Scholar 

  37. Rashad M, Zhang H, Asif M, Feng K, Li X, Zhang H (2018) Low cost room temperature synthesis of NaV3O8. 1.69 H2O Nanobelts for Mg batteries. ACS Appl Mater Interfaces 10(5):4757–4766

    Article  CAS  PubMed  Google Scholar 

  38. Yuan Z, Jiang Q, Feng C, Chen X, Guo Z (2017) Synthesis and performance of tungsten disulfide/carbon (WS2/C) composite as anode material. J Electron Mater 47:251–261

    Article  CAS  Google Scholar 

  39. Ihsan M, Wang H, Majid SR, Yang J, Kennedy SJ, Guo Z, Liu HK (2016) MoO 2/Mo 2 C/C spheres as anode materials for lithium ion batteries. Carbon 96:1200–1207

    Article  CAS  Google Scholar 

  40. Zhang H, Ye K, Zhu K, Cang R, Yan J, Cheng K, Wang G, Cao D (2017) The FeVO4· 0.9 H2O/graphene composite as anode in aqueous magnesium ion battery. Electrochim Acta 256:357–364

    Article  CAS  Google Scholar 

Download references

Funding

This work is partial financially supported by the Support Development of Scientific Research Centre of Benha University (SDSRC) (Grant No. 1076) and Science Technology Development Fund (Grant No. 12564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sheha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheha, E., El-Deftar, M. Magnesium hexakis(methanol)-dinitrate complex electrolyte for use in rechargeable magnesium batteries. J Solid State Electrochem 22, 2671–2679 (2018). https://doi.org/10.1007/s10008-018-3986-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3986-z

Keywords

Navigation