Skip to main content
Log in

This electrode is best served cold—a reversible electrochemical lithiation of a gray cubic tin

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The behavior of a cubic allotropic modification of tin (α-Sn) towards lithium electrochemical alloying/de-alloying is reported for the first time. The cycling stability of the α-Sn electrode is superior compared with the cycling stability of the tetragonal white tin (β-Sn). Scanning electron microscopy studies reveal that unlike β-Sn, the α-Sn crystal grains preserve their integrity during the lithiation/delithiation cycles. The shift in the charge/discharge potential stages in the α-Sn electrode with reference to the β-Sn electrode is demonstrated. The potential shift is discussed in terms of differences in the elastic stress—the related component of Gibbs energy of β- and α-Sn lithiation/delithiation processes.

A cubic allotropic modification of tin (α-Sn) towards lithium electrochemical alloying/de-alloying represents a superior cycling stability compared with a tetragonal white tin (β-Sn)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Nitta N, Yushin G (2014) High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part Part Syst Charact 31:317–336

    Article  CAS  Google Scholar 

  2. Yang J, Solomatin N, Kraytsberg A, Ein-Eli Y (2016) In-situ spectro–electrochemical insight revealing distinctive silicon anode solid electrolyte interphase formation in a lithium–ion battery. Chem Select 3:572–576

    Google Scholar 

  3. Tesfaye AT, Yücel YD, Barr MKS, Santinacci L, Vacandio F, Dumur F, Maria S, Monconduit L, Djenizian T (2017) The electrochemical behavior of SnSb as an anode for Li-ion batteries studied by electrochemical impedance spectroscopy and electron microscopy. Electrochim Acta 256:155–161

    Article  CAS  Google Scholar 

  4. Xu J, Wang X, Wang X, Chen D, Chen LD, Shen G (2014) Three-dimensional structural engineering for energy-storage devices: from microscope to macroscope. ChemElectroChem 1:975–1002

    Article  CAS  Google Scholar 

  5. Lee KT, Cho J (2011) Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 6:28–41

    Article  CAS  Google Scholar 

  6. Barai P, Huang B, Dillon SJ, Mukherjee PP (2016) Mechano-electrochemical interaction gives rise to strain relaxation in Sn electrodes. J Electrochem Soc 163:A3022–A3035

    Article  CAS  Google Scholar 

  7. Wang J, Fan F, Liu Y, Jungjohann KL, Lee SW, Mao SX, Liu X, Zhu T (2014) Structural evolution and pulverization of tin nanoparticles during lithiation-delithiation cycling. J Electrochem Soc 161:F3019–F3024

    Article  CAS  Google Scholar 

  8. Xu L, Kim C, Shukla AK, Dong A, Mattox TM, Milliron DJ, Cabana J (2013) Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with li. Nano Lett 13:1800–1805

    Article  CAS  PubMed  Google Scholar 

  9. Pavone P, Baroni S, de Gironcoli S (1998) α↔β phase transition in tin: a theoretical study based on density-functional perturbation theory. Phys Rev B 57:10421–10423

    Article  CAS  Google Scholar 

  10. Zhang F, Wang J, Liu S, Du Y (2016) Effects of the volume changes and elastic-strain energies on the phase transition in the Li-Sn battery. J Power Sources 330:111–119

    Article  CAS  Google Scholar 

  11. Encyclopedia of Materials, Parts and Finishes, Second Edition. CRC Press By Mel Schwartz, Page 798. This book can be found in internet in: https://books.google.com.ar/books?id=0ETMBQAAQBAJ&pg=PP5&lpg=PP5&dq=ISBN+1-56676-661-3.&source=bl&ots=Fv3SKVANuD&sig=_VMR65cPUiC-zAu8jL5q6qh6pEQ&hl=es-419&sa=X&ved=0ahUKEwiB79fgkurZAhUGF5AKHZhrD1IQ6AEIKjAB#v=onepage&q=white%20tin&f=false

  12. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  13. Jung SC, Han Y-K (2013) Lithium intercalation behaviors in Ge and Sn crystalline surfaces. Phys Chem Chem Phys 15:13586–13592

    Article  CAS  PubMed  Google Scholar 

  14. Kaghazchi P (2013) Theoretical studies of lithium incorporation into α-Sn(100). J Chem Phys 138:054706

    Article  CAS  PubMed  Google Scholar 

  15. Legrain F, Malyi OI, Persson C, Manzhos S (2015) Comparison of alpha and beta tin for lithium, sodium, and magnesium storage: an ab initio study including phonon contributions. J Chem Phys 143:204701

    Article  CAS  PubMed  Google Scholar 

  16. Kim H, Kim Y-J, Kim DG, Sohn H-J, Kang T (2001) Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries. Solid State Ionics 144:41–49

    Article  CAS  Google Scholar 

  17. Im HS, Cho YJ, Lim YR, Jung CS, Jang DM, Park J, Shojaei F, Kang HS (2013) Phase evolution of tin nanocrystals in lithium ion batteries. ACS Nano 7:11103–11111

    Article  CAS  PubMed  Google Scholar 

  18. Schmuelling G, Oehl N, Knipper M, Kolny-Olesiak J, Plaggenborg T, Meyer H-W, Placke T, Parisi J, Winter M (2014) Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries. Nanotechnology 25:355401–355411

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, Hu J, Cao G, Zhang S, Zhang P, Liang C, Wang Z, Shao G (2018) Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance. Appl Surf Sci 435:1150–1158

    Article  CAS  Google Scholar 

  20. Hirai K, Ichitsubo T, Uda T, Miyazaki A, Yagi S, Matsubara E (2008) Effects of volume strain due to Li–Sn compound formation on electrode potential in lithium-ion batteries. Acta Mater 56:1539–1545

    Article  CAS  Google Scholar 

  21. Oehl N, Hardenberg L, Knipper M, Kolny-Olesiak J, Parisi J, Plaggenborg T (2015) Critical size for the β- to α-transformation in tin nanoparticles after lithium insertion and extraction. CrystEngComm 17:3695–3700

    Article  CAS  Google Scholar 

  22. Oehl N, Schmuelling G, Knipper M, Kloepsch R, Placke T, Kolny-Olesiak J, Plaggenborg T, Winter M, Parisi J (2015) In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries. CrystEngComm 17:8500–8504

    Article  CAS  Google Scholar 

  23. Tamura N, Ohshita R, Fujimoto M, Fujitani S, Kamino M, Yonezu I (2002) Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes. J Power Sources 107:48–55

    Article  CAS  Google Scholar 

  24. Hassoun J, Panero S, Reale P, Scrosati B (2006) A new type of lithium-ion battery based on tin electroplated negative electrodes. Int J Electrochem Sci 1:110–121

    CAS  Google Scholar 

  25. JCPDS CARD 00-004-0673

  26. JCPDS CARD 00-005-0390

  27. Di Maio D, Hunt C (2009) Time-lapse photography of the β-Sn/α-Sn allotropic transformation. J Mater Sci Mater Electron 20:386–391

    Article  CAS  Google Scholar 

  28. Ojima K, Taneda Y (1991) Gray tin observed by high-resolution electron microscopy. J Mater Sci Lett 10:529–531

    Article  CAS  Google Scholar 

  29. Styrkas AD (2003) Mechanisms of the allotropic transition of Sn. Inorg Mater 39:806–810

    Article  CAS  Google Scholar 

  30. Whalley E (1983) Cubic ice in nature. J Phys Chem 87:4174–4179

    Article  CAS  Google Scholar 

  31. Choi EM, Yoon YH, Lee S, Kang H (2005) Freezing transition of interfacial water at room temperature under electric fields. Phys Rev Lett 95:085701–085704

    Article  CAS  PubMed  Google Scholar 

  32. Xia X, Berowitz ML (1995) Electric-field induced restructuring of water at a platinum-water interface: a molecular dynamics computer simulation. Phys Rev Lett 74:3193–31936

    Article  CAS  PubMed  Google Scholar 

  33. Merck Co. (2011) Materials for Li-ion batteries and double-layer capacitors, http://magazine.merck.de/pv_obj_cache/pv_obj_id_985BC9734E084541D51F2851F94F9293255B0700

  34. Opitz A, Scherge M, Ahmed SI-U, Schaefer JA (2007) A comparative investigation of thickness measurements of ultra-thin water films by scanning probe techniques. J Phys Lett 101:064310–064315

    Google Scholar 

  35. Beaulieu LY, Beattie SD, Hatchard TD, Dahn JR (2003) The electrochemical reaction of Lithium with tin studied by in situ AFM. J Electrochem Soc 150:A419–A424

    Article  CAS  Google Scholar 

  36. Beattie SD, Hatchard T, Bonakdarpour A, Hewitt KC, Dahn JR (2003) Anomalous, high-voltage irreversible capacity in tin electrodes for Lithium batteries. J Electrochem Soc 150:A701–A705

    Article  CAS  Google Scholar 

  37. Hassoun J, Reale P, Panero S (2007) The role of the interface of tin electrodes in lithium cells: an impedance study. J Power Sources 174:321–327

    Article  CAS  Google Scholar 

  38. Lucas IT, Syzdek J, Kostecki R (2011) Interfacial processes at single-crystal β-Sn electrodes in organic carbonate electrolytes. Electrochem Commun 13:1271–1275

    Article  CAS  Google Scholar 

  39. Bridel J-S, Grugeon S, Laruelle S, Hassoun J, Reale P, Scrosati B, Tarascon J-M (2010) Decomposition of ethylene carbonate on electrodeposited metal thin film anode. J Power Sources 195:2036–2043

    Article  CAS  Google Scholar 

  40. Fields RJ, Low III SR, Lucey Jr GK (1991) Physical and mechanical properties of intermetallic compounds commonly found in solder joints. Proceedings of TMS Symposium, Cincinnati, Oct 20–24, https://www.metallurgy.nist.gov/mechanical_properties/solder_paper.html (last assessed 23 Feb 2018);

  41. Timmons A, Dahn JR (2007) Isotropic volume expansion of particles of amorphous metallic alloys in composite negative electrodes for Li-ion batteries. J Electrochem Soc 154:A444–A448

    Article  CAS  Google Scholar 

  42. Lin Y-S, Duh J-G, Sheu H-S (2011) The phase transformations and cycling performance of copper–tin alloy anode materials synthesized by sputtering. J Alloys Compd 509:123–127

    Article  CAS  Google Scholar 

  43. Xue L, Fu Z, Yao Y, Huang T, Yu A (2010) Three-dimensional porous Sn–Cu alloy anode for lithium-ion batteries. Electrochim Acta 55:7310–7314

    Article  CAS  Google Scholar 

  44. Qiao R, Lucas IT, Karim A, Syzdek J, Liu X, Chen W, Persson K, Kostecki R, Yan W (2014) Distinct solid-electrolyte-interphases on Sn (100) and (001) electrodes studied by soft X-ray spectroscopy. Adv Mater Interfaces 1:1300115

    Article  CAS  Google Scholar 

  45. Wachtler M, Besenhard JO, Winter M (2001) Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J Power Sources 94:189–193

    Article  CAS  Google Scholar 

  46. Aurbach D, Ein-Eli Y, Chusid OY, Babai M, Carmeli Y, Yamin Y (1994) The correlation between the surface chemistry and performance of Li-carbon intercalation anodes for rechargeable “rocking-chair” type batteries. J Electrochem Soc 143:603–611

    Article  Google Scholar 

Download references

Funding

This work is supported by the Planning and Budgeting Committee of the Council of High Education and the Prime Minister Office of Israel in the framework of the INREP project and by Grand Energy Technion Program (GTEP) and Technion’s Russell Berrie Nanotechnology Institute (RBNI).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Yair Ein-Eli.

Additional information

Alexander Kraytsberg and Yair Ein-Eli contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraytsberg, A., Seizin, N. & Ein-Eli, Y. This electrode is best served cold—a reversible electrochemical lithiation of a gray cubic tin. J Solid State Electrochem 22, 3303–3310 (2018). https://doi.org/10.1007/s10008-018-3983-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3983-2

Keywords

Navigation