Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2445–2455 | Cite as

Array of electrodeposited Ru-decorated TiO2 nanotubes with enhanced photoresponse

  • Douglas Iafrate Castelhano
  • Juliana de Almeida
  • Carlos Henrique de Paiva Pinheiro
  • Rodnei Bertazzoli
  • Christiane de Arruda Rodrigues
Original Paper
  • 111 Downloads

Abstract

Although TiO2 anatase phase has been widely chosen as the main photocatalyst, it presents high electron/hole recombination rate. However, today, what is sought is a semiconductor material with enhanced photocatalytic activity with higher photon to electron conversion efficiency by introduction of electrons trap dopants. In this paper, TiO2 nanotubes arrays obtained by anodization of Ti substrates were decorated with Ru via electrodeposition, and their photo-response was investigated. First, voltammetric experiments were performed to elucidate the route of Ru reduction on the TiO2 surface and to select the range of potentials for Ru deposition. The reduction potentials were used for controlling the amount of Ru distributed all over the surface. Although Ru was electrodeposited at potentials over the range from − 0.025 to − 0.188 V vs. Ag/AgCl, the deposition of 3.7 mC cm−2 at − 0.100 V for 30 min resulted in a tenfold greater photocurrent when compared to the recorded photocurrent for the undecorated TiO2 nanotubes array. Next, Ru-decorated TiO2 nanotubes with a length of 323 ± 18 nm and inner and outer diameters of 91 and 104 nm, respectively, were characterized using SEM-WDS, SEM-FEG, XRD, and XPS. UV-Vis-NIR diffuse reflectance spectroscopy and photoluminescence (PL) measurements, which revealed a maximum PL emission at 445 nm, showed that for the array of Ru-decorated TiO2 nanotubes, the electron-hole recombination may be effectively inhibited by the presence of ruthenium electrodeposited, which can make this photocatalyst even more attractive for environmental applications. The performances of the TiO2 and Ru-decorated TiO2 catalysts were compared in heterogeneous photocatalysis experiments for color removal of an azo-dye, which presented a pseudo-first-order rate constant more than twofold greater for the Ru-decorated TiO2 catalysts.

Keywords

Ruthenium electrodeposition TiO2 nanotubes Ru decoration Photocatalysis 

Notes

Acknowledgments

The authors thank FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo (Process Number 06/61261-2) for financial support. The authors acknowledge the support of LNNano - Brazilian Nanotechnology National Laboratory, CNPEM/MCTI for MEV-FEG and XPS characterization, IQ-Unesp/Araraquara for the UV-Vis diffuse reflectance spectroscopy (DRS) experiments and Prof. Máximo Siu Lic for the photoluminescence analyses.

References

  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  2. 2.
    Gratzel M (ed) (1983) Energy resources through photochemistry and catalysis. Academic Press, New YorkGoogle Scholar
  3. 3.
    Rajeshwar K, Tacconi N R in A.Wieckowski (Ed.), (1999) Interfacial electrochemistry, Theory, Experiments and Applications. Marcel Dekker 721–736Google Scholar
  4. 4.
    Ganesh R, Boardman GD, Michelson D (1994) Fate of azo dyes in sludges. Water Res 28(6):1367–1376CrossRefGoogle Scholar
  5. 5.
    Serpone N, Pelizzetti E (1989) Photocatalysis and applications. Wiley, New YorkGoogle Scholar
  6. 6.
    Kurian S, Seo H, Jeon H (2013) Significant enhancement in visible light absorption of TiO2 nanotube arrays by surface band gap tuning. J Phys Chem C 117(33):16811–16819CrossRefGoogle Scholar
  7. 7.
    Yang H, Pan C (2010) Synthesis of carbon-modified TiO2 nanotube arrays for enhancing the photocatalytic activity under the visible light. J Alloys Comp 501(1):L8–L11CrossRefGoogle Scholar
  8. 8.
    Liu Z, Wang Y, Chu W, Li Z, Ge C (2010) Characteristics of doped TiO2 photocatalysts for the degradation of methylene blue waste water under visible light. J Alloys Comp 501(1):54–59CrossRefGoogle Scholar
  9. 9.
    Wu H, Zhang Z (2011) High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes. Int J Hydrog Energy 36(21):13481–13487CrossRefGoogle Scholar
  10. 10.
    Lv Y, Yu L, Huang H, Liu H, Feng Y (2009) Preparation, characterization of p-doped TiO2 nanoparticles and their excellent photocatalytic properties under the solar light irradiation. J Alloys Comp 488(1):314–319CrossRefGoogle Scholar
  11. 11.
    Srinivasan SS, Wade J, Stefanakos EK, Goswami Y (2006) Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2. J Alloys Comp 424:322–326CrossRefGoogle Scholar
  12. 12.
    Almeida LC, Zanoni MVB (2014) Decoration of Ti/TiO2 nanotubes with Pt nanoparticles for enhanced UV-Vis light absorption in photoelectrocatalytic process. J Braz Chem Soc 25:579–588Google Scholar
  13. 13.
    Paramasivam I, Macak JM, Schmuki P (2008) Photocatalytic activity of TiO2-nanotube layers loaded with Ag and Au nanoparticles. Electrochem Commun 10(1):71–75CrossRefGoogle Scholar
  14. 14.
    Mor GK, Varghese OK, Wilke RHT, Sharma S, Shankar K, Latempa TJ, Choi K-S, Grimes CA (2008) p-Type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8:906–1911CrossRefGoogle Scholar
  15. 15.
    Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA (2007) Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett 7(8):2356–2364CrossRefGoogle Scholar
  16. 16.
    Sun L, Li J, Wang CL, Li SF, Chen HB, Lin CJ (2009) An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Solar Energy Mat Solar Cells 93(10):1875–1880CrossRefGoogle Scholar
  17. 17.
    Liang YQ, Cui ZD, Zhu SL, Yang XJ (2010) Formation and characterization of iron oxide nanoparticles loaded on self-organized TiO2 nanotubes. Electrochim Acta 55(18):5245–5252CrossRefGoogle Scholar
  18. 18.
    Hosseini MG, Faraji M, Momeni MM (2011) Application of titanium oxide nanotube films containing gold nanoparticles for the electroanalytical determination of ascorbic acid. Thin Solid Films 519(11):3457–3461CrossRefGoogle Scholar
  19. 19.
    Feng D, Rui Z, Lu Y, Ji H (2012) A simple method to decorate TiO2 nanotube arrays with controllable quantity of metal nanoparticles. Chem Eng 179:363–371CrossRefGoogle Scholar
  20. 20.
    Feng D, Rui Z, Ji H (2011) Cat Commun 12:1269–1273CrossRefGoogle Scholar
  21. 21.
    Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) TiO2 nanotube-supported ruthenium(III) hydrated oxide: a highly active catalyst for selective oxidation of alcohols by oxygen. J Catalysis 235(1):10–17CrossRefGoogle Scholar
  22. 22.
    Macak JM, Barczuk PJ, Tsuchiya H, Nowakowska MZ, Ghicov A, Chojak M, Bauer S, Virtanen S, Kuleza PJ, Schmuki P (2005) Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: enhancement of the electrocatalytic oxidation of methanol. Electrochem Commun 7(12):1417–1422CrossRefGoogle Scholar
  23. 23.
    He D, Yang L, Kuang S, Cai Q (2007) Fabrication and catalytic properties of Pt and Ru decorated TiO2\CNTs catalyst for methanol electrooxidation. Electrochem Commun 9:2467–2472CrossRefGoogle Scholar
  24. 24.
    Mandi U, Salam N, Kundu SK, Bhaumilk A, Islam SM (2016) Ruthenium nanoparticles supported over mesoporous TiO2 as an efficient bifunctional nanocatalyst for esterification of biomass-derived levulinic acid and transfer-hydrogenation reactions. RSC Adv 6(77):73440–73449CrossRefGoogle Scholar
  25. 25.
    Wang Z, Liu B, Xie Z, Li Y, Shen Z (2016) Preparation and photocatalytic properties of RuO2/TiO2 composite nanotube arrays. Ceram Int 42(12):13664–13669CrossRefGoogle Scholar
  26. 26.
    Khan MA, Han DH, Yang O-B (2009) Enhanced photoresponse towards visible light in Ru doped titania nanotube. Appl Surf Sci 255(6):3687–3690CrossRefGoogle Scholar
  27. 27.
    Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  28. 28.
    Wagner C D, Riggs W M, Davis L.E, Moulder J F (1979) Handbook of X-ray photoelectron spectroscopy, ParkinÉlemer Corporation, pp 68–69Google Scholar
  29. 29.
    Sobana N, Muruganadham M, Swaminathan M (2006) Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J Mol Catal A Chem 258(1-2):124–132CrossRefGoogle Scholar
  30. 30.
    Ong KG, Varghese OK, Mor GK, Grimes CA (2005) Numerical simulation of light propagation through highly-ordered titania nanotube arrays: dimension optimization for improved photoabsorption. J Nanosci Nanotech 5(11):1801–1808CrossRefGoogle Scholar
  31. 31.
    Yang Y, Su F, Zhang S, Guo W, Yuan X, Guo Y (2012) Fabrication of metallic platinum doped ordered mesoporous titania–silica materials with excellent simulated sunlight and visible light photocatalytic activity. Colloids Surf A Physicochem Eng Asp 415:399–405CrossRefGoogle Scholar
  32. 32.
    Ohno T, Tanigawa F, Fujihara K, Izumi S, Matsumura M (1999) Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. J Photochem Photobiol A Chem 127(1-3):107–110CrossRefGoogle Scholar
  33. 33.
    Nguyen-Phan T, Luo S, Vovchok D, Llorca J, Sallis S, Kattel S, Xu W, Piper LFJ, Polyansky DE, Senanayake SD, Stacchiola DJ, Rodriquez JA (2013) Three-dimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H2 production. RSC Adv 0:1–3Google Scholar
  34. 34.
    Bard AJ, Fox MA (1995) Artificial photosynthesis—solar splitting of water to hydrogen and oxygen. Acc Chem Res 28(3):141–145CrossRefGoogle Scholar
  35. 35.
    Sharon M, Licht S (2002) Solar Photoelectrochemical generation of hydrogen fuel. In: Licht S (ed) Semiconductor electrodes and Photoelectrochemistry. Wiley VCH, Weinheim, pp 104–920Google Scholar
  36. 36.
    Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126(15):4943–4950CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Douglas Iafrate Castelhano
    • 1
  • Juliana de Almeida
    • 1
  • Carlos Henrique de Paiva Pinheiro
    • 2
  • Rodnei Bertazzoli
    • 2
  • Christiane de Arruda Rodrigues
    • 1
  1. 1.Departamento de Engenharia QuímicaUniversidade Federal de São PauloDiademaBrazil
  2. 2.Faculdade de Engenharia MecânicaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations