Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2357–2366 | Cite as

EQCM study of redox properties of PEDOT/MnO2 composite films in aqueous electrolytes

  • A. O. Nizhegorodova
  • S. N. Eliseeva
  • E. G. Tolstopjatova
  • G. G. Láng
  • D. Zalka
  • M. Ujvári
  • V. V. Kondratiev
Original Paper


Electrochemical behavior of poly-3,4-ethylenedioxythiophene composites with manganese dioxide (PEDOT/MnO2) has been investigated by cyclic voltammetry and electrochemical quartz crystal microbalance at various component ratios and in different electrolyte solutions. The electrochemical formation of PEDOT film on the electrode surface and PEDOT/MnO2 composite film during the electrochemical deposition of manganese dioxide into the polymer matrix was gravimetrically monitored. The mass of manganese dioxide deposited into PEDOT at different time of electrodeposition and apparent molar mass values of species involved into mass transfer during redox cycling of PEDOT/MnO2 composites were evaluated. It was found that during the redox cycling of PEDOT/MnO2 composite films with various MnO2 content, the oppositely directed fluxes of counterions (anions and cations) occur, resulting in a change of the slope of linear parts of the Δf–E plots with changing the mass fraction of MnO2 in the composite film.

Rectangular shape of cyclic voltammograms of PEDOT/MnO2 composites with different loadings of manganese dioxide was observed, which is characteristic of the pseudocapacitive behavior of the composite material. Specific capacity values of PEDOT/MnO2 composites obtained from cyclic voltammograms were about 169 F g−1. The specific capacity, related to the contribution of manganese dioxide component, was about 240 F g−1.


Poly-3,4-ethylenedioxythiophene Manganese dioxide Composite materials Cyclic voltammetry Electrochemical quartz crystal microbalance Mass transport 


Funding information

This study received support from the Russian Foundation for Basic Research (grant no. 16-03-00457) and the Hungarian National Research, Development and Innovation Office – NKFI-OTKA (grants nos. K 109036 and VEKOP-2.3.2-16-2017-00013, co-financed by the European Regional Development Fund).


  1. 1.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12CrossRefGoogle Scholar
  2. 2.
    Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high performance electrochemical capacitors. Nano Energy 2(2):213–234CrossRefGoogle Scholar
  3. 3.
    Holze R, Wu YP (2014) Intrinsically conducting polymers in electrochemical energy technology: trends and progress. Electrochim Acta 122:93–107CrossRefGoogle Scholar
  4. 4.
    Holze R (2017) Metal oxide/conducting polymer hybrids for application in supercapacitors. In: Dubal DP, Romero PG, Korotcenkov G (eds) Metal oxides in supercapacitors. Elsevier, Amsterdam, pp 219–245CrossRefGoogle Scholar
  5. 5.
    Lokhande VC, Lokhande AC, Lokhande CD, Kim JH, Ji T (2016) Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J Alloys Compd 682:381–403CrossRefGoogle Scholar
  6. 6.
    Naoi K, Morita M (2008) Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems. Interface 17:44–48Google Scholar
  7. 7.
    Snook GA, Peng C, Fray DJ, Chen GZ (2007) Achieving high electrode specific capacitance with materials of low mass specific capacitance: Potentiostatically grown thick micro-nanoporous PEDOT films. Electrochem Commun 9(1):83–88CrossRefGoogle Scholar
  8. 8.
    Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285CrossRefGoogle Scholar
  9. 9.
    Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6(12):2690–2695CrossRefGoogle Scholar
  10. 10.
    Subramanian V, Hall SC, Smith PH, Rambabu B (2004) Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics 175(1–4):511–515CrossRefGoogle Scholar
  11. 11.
    Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142(8):2699–2703CrossRefGoogle Scholar
  12. 12.
    Liu DQ, Yu SH, Son SW, Joo SK (2008) Electrochemical performance of iridium oxide thin film for supercapacitor prepared by radio frequency magnetron sputtering method. ECS Trans 16:103–109CrossRefGoogle Scholar
  13. 13.
    Pawar SA, Patil DS, Shin JC (2017) Hexagonal sheets of Co3O4 and Co3O4-ag for high-performance electrochemical supercapacitors. J Ind Eng Chem 54:162–173CrossRefGoogle Scholar
  14. 14.
    Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105CrossRefGoogle Scholar
  15. 15.
    Bélanger D, Brousse T, Long JW (2008) Manganese oxides: battery materials make the leap to electrochemical capacitors. Interface 17:49–52Google Scholar
  16. 16.
    Yang Y, Yuan W, Li S, Yang X, Xu J, Jiang Y (2015) Manganese dioxide nanoparticle enrichment in porous conducting polymer as high performance supercapacitor electrode materials. Electrochim Acta 165:323–329CrossRefGoogle Scholar
  17. 17.
    Tang PY, Zhao YQ, Xu CL (2013) Step-by-step assembled poly(3,4-ethylenedioxythiophene)/manganese dioxide composite electrodes: tuning the structure for high electrochemical performance. Electrochim Acta 89:300–309CrossRefGoogle Scholar
  18. 18.
    Rios EC, Correa AA, Cristovan FH, Pocrifka LA, Rosario AV (2011) Poly(3,4-ethylenedioxithiophene)/MnO2 composite electrodes for electrochemical capacitors. Solid State Sci 13(11):1978–1983CrossRefGoogle Scholar
  19. 19.
    Liu R, Lee R, Lee SB (2008) MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130(10):2942–2943CrossRefGoogle Scholar
  20. 20.
    Babakhani B, Ivey DG (2010) Improved capacitive behavior of electrochemically synthesized Mn oxide/PEDOT electrodes utilized as electrochemical capacitors. Electrochim Acta 55(12):4014–4024CrossRefGoogle Scholar
  21. 21.
    Liu R, Duay J, Lee SB (2011) Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/poly(3,4-ethylenedioxythiophene) nanowires //. ACS Nano 5(7):5608–5619CrossRefGoogle Scholar
  22. 22.
    Sen PT, De A, Chowdhury AD, Bandyopadhyay SK, Agnihotri N, Mukherjee M (2013) Conducting polymer based manganese dioxide nanocomposite as supercapacitor. Electrochim Acta 108:265–273CrossRefGoogle Scholar
  23. 23.
    Liu R, Duay J, Lee SB (2010) Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 4(7):4299–4307CrossRefGoogle Scholar
  24. 24.
    Nizhegorodova AO, Kondratiev VV (2014) Synthesis and electrochemical properties of composite materials based on poly-3,4-ethylenedioxythiophene with manganese dioxide inclusions. Russ J Electrochem 50(12):1157–1163CrossRefGoogle Scholar
  25. 25.
    Tolstopjatova EG, Eliseeva SN, Nizhegorodova AO, Kondratiev VV (2015) Electrochemical properties of composite electrodes, prepared by spontaneous deposition of manganese oxide into poly-3,4-ethylendioxythiophene. Electrochim Acta 173:40–49CrossRefGoogle Scholar
  26. 26.
    Arias CR, Debiemme-Chouvy C, Gabrielli C, Laberty-Robert C, Pailleret A, Perrot H, Sel O (2014) New insights into pseudocapacitive charge-storage mechanisms in Li-birnessite type MnO2 monitored by fast quartz crystal microbalance methods. J Phys Chem C 118(46):26551–26559CrossRefGoogle Scholar
  27. 27.
    Kuo SL, Wu NL (2006) Investigation of pseudocapacitive charge storage reaction of MnO2•nH2O supercapacitors in aqueous electrolytes. J Electrochem Soc 153(7):A1317–A1324CrossRefGoogle Scholar
  28. 28.
    Chu YH, Hu CC, Chang KH (2012) Electrochemical quartz crystal microbalance study of amorphous MnO2 prepared by anodic deposition. Electrochim Acta 61:124–131CrossRefGoogle Scholar
  29. 29.
    Devaraj S, Munichandraiah N (2009) EQCM investigation of the electrodeposition of MnO2 and its capacitance behavior. Electrochem Solid-State Lett 12(9):F21–F25CrossRefGoogle Scholar
  30. 30.
    Ye Q, Dong R, Xia Z, Chen G, Wang H, Tan G, Jiang L, Wang F (2014) Enhancement effect of Na ions on capacitive behavior of amorphous MnO2. Electrochim Acta 141:286–293CrossRefGoogle Scholar
  31. 31.
    Bund A, Neudeck S (2004) Effect of the solvent and the anion on the doping/dedoping behavior of poly(3,4-ethylenedioxythiophene) films studied with the electrochemical quartz microbalance. J Phys Chem B 108(46):17845–17850CrossRefGoogle Scholar
  32. 32.
    Hillman AR, Daisley SJ, Bruckenstein S (2007) Kinetics and mechanism of the electrochemical p-doping of PEDOT. Electrochem Commun 9(6):1316–1322CrossRefGoogle Scholar
  33. 33.
    Hillman AR, Daisley SJ, Bruckenstein S (2007) Solvent effects on the electrochemical p-doping of PEDOT. Phys Chem Chem Phys 9(19):2379–2388CrossRefGoogle Scholar
  34. 34.
    Niu L, Kvarnstrom C, Ivaska A (2004) Mixed ion transfer in redox processes of poly(3,4-ethylenedioxythlophene). J Electroanal Chem 569(2):151–160CrossRefGoogle Scholar
  35. 35.
    Efimov I, Winkels S, Schultze JW (2001) EQCM study of electropolymerization and redox cycling of 3,4-polyethylenedioxythiophene. J Electroanal Chem 499(1):169–175CrossRefGoogle Scholar
  36. 36.
    Plieth W, Bund A, Rammelt U, Neudeck S, Duc LM (2006) The role of ion and solvent transport during the redox process of conducting polymers. Electrochim Acta 51(11):2366–2372CrossRefGoogle Scholar
  37. 37.
    Eliseeva SN, Babkova TA, Kondratiev VV (2009) Mass transfer of ions and solvent at redox processes in poly-3,4-ethylenedioxythiophene films. Russ J Electrochem 45(2):152–159CrossRefGoogle Scholar
  38. 38.
    Tolstopyatova EG, Pogulaichenko NA, Eliseeva SN, Kondratiev VV (2009) Spectroelectrochemical study of poly-3,4-ethylenedioxythiophene films in the presence of different supporting electrolytes. Russ J Electrochem 45(3):252–262CrossRefGoogle Scholar
  39. 39.
    Ujvari M, Gubicza J, Kondratiev V, Szekeres KJ, Láng GG (2015) Morphological changes in electrochemically deposited poly(3,4-ethylenedioxythiophene) films during overoxidation. J Solid State Electrochem 19(4):1247–1252CrossRefGoogle Scholar
  40. 40.
    Láng GG, Ujvári M, Vesztergom S, Kondratiev V, Gubicza J, Szekeres KJ (2016) The electrochemical degradation of poly(3,4-ethylenedioxythiophene) films electrodeposited from aqueous solutions. Z Phys Chem 230:1281–1302CrossRefGoogle Scholar
  41. 41.
    QCM200 (2004) Operation and Service Manual. Stanford Research Systems, IncGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. O. Nizhegorodova
    • 1
  • S. N. Eliseeva
    • 1
  • E. G. Tolstopjatova
    • 1
  • G. G. Láng
    • 2
  • D. Zalka
    • 2
  • M. Ujvári
    • 2
  • V. V. Kondratiev
    • 1
  1. 1.Institute of ChemistrySaint Petersburg State UniversitySaint PetersburgRussia
  2. 2.Institute of Chemistry, Laboratory of Electrochemistry and Electroanalytical ChemistryEötvös Loránd UniversityBudapestHungary

Personalised recommendations