Skip to main content
Log in

EQCM study of redox properties of PEDOT/MnO2 composite films in aqueous electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical behavior of poly-3,4-ethylenedioxythiophene composites with manganese dioxide (PEDOT/MnO2) has been investigated by cyclic voltammetry and electrochemical quartz crystal microbalance at various component ratios and in different electrolyte solutions. The electrochemical formation of PEDOT film on the electrode surface and PEDOT/MnO2 composite film during the electrochemical deposition of manganese dioxide into the polymer matrix was gravimetrically monitored. The mass of manganese dioxide deposited into PEDOT at different time of electrodeposition and apparent molar mass values of species involved into mass transfer during redox cycling of PEDOT/MnO2 composites were evaluated. It was found that during the redox cycling of PEDOT/MnO2 composite films with various MnO2 content, the oppositely directed fluxes of counterions (anions and cations) occur, resulting in a change of the slope of linear parts of the Δf–E plots with changing the mass fraction of MnO2 in the composite film.

Rectangular shape of cyclic voltammograms of PEDOT/MnO2 composites with different loadings of manganese dioxide was observed, which is characteristic of the pseudocapacitive behavior of the composite material. Specific capacity values of PEDOT/MnO2 composites obtained from cyclic voltammograms were about 169 F g−1. The specific capacity, related to the contribution of manganese dioxide component, was about 240 F g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  2. Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high performance electrochemical capacitors. Nano Energy 2(2):213–234

    Article  CAS  Google Scholar 

  3. Holze R, Wu YP (2014) Intrinsically conducting polymers in electrochemical energy technology: trends and progress. Electrochim Acta 122:93–107

    Article  CAS  Google Scholar 

  4. Holze R (2017) Metal oxide/conducting polymer hybrids for application in supercapacitors. In: Dubal DP, Romero PG, Korotcenkov G (eds) Metal oxides in supercapacitors. Elsevier, Amsterdam, pp 219–245

    Chapter  Google Scholar 

  5. Lokhande VC, Lokhande AC, Lokhande CD, Kim JH, Ji T (2016) Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J Alloys Compd 682:381–403

    Article  CAS  Google Scholar 

  6. Naoi K, Morita M (2008) Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems. Interface 17:44–48

    CAS  Google Scholar 

  7. Snook GA, Peng C, Fray DJ, Chen GZ (2007) Achieving high electrode specific capacitance with materials of low mass specific capacitance: Potentiostatically grown thick micro-nanoporous PEDOT films. Electrochem Commun 9(1):83–88

    Article  CAS  Google Scholar 

  8. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    Article  CAS  Google Scholar 

  9. Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6(12):2690–2695

    Article  CAS  PubMed  Google Scholar 

  10. Subramanian V, Hall SC, Smith PH, Rambabu B (2004) Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics 175(1–4):511–515

    Article  CAS  Google Scholar 

  11. Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142(8):2699–2703

    Article  CAS  Google Scholar 

  12. Liu DQ, Yu SH, Son SW, Joo SK (2008) Electrochemical performance of iridium oxide thin film for supercapacitor prepared by radio frequency magnetron sputtering method. ECS Trans 16:103–109

    Article  CAS  Google Scholar 

  13. Pawar SA, Patil DS, Shin JC (2017) Hexagonal sheets of Co3O4 and Co3O4-ag for high-performance electrochemical supercapacitors. J Ind Eng Chem 54:162–173

    Article  CAS  Google Scholar 

  14. Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105

    Article  CAS  Google Scholar 

  15. Bélanger D, Brousse T, Long JW (2008) Manganese oxides: battery materials make the leap to electrochemical capacitors. Interface 17:49–52

    Google Scholar 

  16. Yang Y, Yuan W, Li S, Yang X, Xu J, Jiang Y (2015) Manganese dioxide nanoparticle enrichment in porous conducting polymer as high performance supercapacitor electrode materials. Electrochim Acta 165:323–329

    Article  CAS  Google Scholar 

  17. Tang PY, Zhao YQ, Xu CL (2013) Step-by-step assembled poly(3,4-ethylenedioxythiophene)/manganese dioxide composite electrodes: tuning the structure for high electrochemical performance. Electrochim Acta 89:300–309

    Article  CAS  Google Scholar 

  18. Rios EC, Correa AA, Cristovan FH, Pocrifka LA, Rosario AV (2011) Poly(3,4-ethylenedioxithiophene)/MnO2 composite electrodes for electrochemical capacitors. Solid State Sci 13(11):1978–1983

    Article  CAS  Google Scholar 

  19. Liu R, Lee R, Lee SB (2008) MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130(10):2942–2943

    Article  CAS  PubMed  Google Scholar 

  20. Babakhani B, Ivey DG (2010) Improved capacitive behavior of electrochemically synthesized Mn oxide/PEDOT electrodes utilized as electrochemical capacitors. Electrochim Acta 55(12):4014–4024

    Article  CAS  Google Scholar 

  21. Liu R, Duay J, Lee SB (2011) Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/poly(3,4-ethylenedioxythiophene) nanowires //. ACS Nano 5(7):5608–5619

    Article  CAS  PubMed  Google Scholar 

  22. Sen PT, De A, Chowdhury AD, Bandyopadhyay SK, Agnihotri N, Mukherjee M (2013) Conducting polymer based manganese dioxide nanocomposite as supercapacitor. Electrochim Acta 108:265–273

    Article  CAS  Google Scholar 

  23. Liu R, Duay J, Lee SB (2010) Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 4(7):4299–4307

    Article  CAS  PubMed  Google Scholar 

  24. Nizhegorodova AO, Kondratiev VV (2014) Synthesis and electrochemical properties of composite materials based on poly-3,4-ethylenedioxythiophene with manganese dioxide inclusions. Russ J Electrochem 50(12):1157–1163

    Article  CAS  Google Scholar 

  25. Tolstopjatova EG, Eliseeva SN, Nizhegorodova AO, Kondratiev VV (2015) Electrochemical properties of composite electrodes, prepared by spontaneous deposition of manganese oxide into poly-3,4-ethylendioxythiophene. Electrochim Acta 173:40–49

    Article  CAS  Google Scholar 

  26. Arias CR, Debiemme-Chouvy C, Gabrielli C, Laberty-Robert C, Pailleret A, Perrot H, Sel O (2014) New insights into pseudocapacitive charge-storage mechanisms in Li-birnessite type MnO2 monitored by fast quartz crystal microbalance methods. J Phys Chem C 118(46):26551–26559

    Article  CAS  Google Scholar 

  27. Kuo SL, Wu NL (2006) Investigation of pseudocapacitive charge storage reaction of MnO2•nH2O supercapacitors in aqueous electrolytes. J Electrochem Soc 153(7):A1317–A1324

    Article  CAS  Google Scholar 

  28. Chu YH, Hu CC, Chang KH (2012) Electrochemical quartz crystal microbalance study of amorphous MnO2 prepared by anodic deposition. Electrochim Acta 61:124–131

    Article  CAS  Google Scholar 

  29. Devaraj S, Munichandraiah N (2009) EQCM investigation of the electrodeposition of MnO2 and its capacitance behavior. Electrochem Solid-State Lett 12(9):F21–F25

    Article  CAS  Google Scholar 

  30. Ye Q, Dong R, Xia Z, Chen G, Wang H, Tan G, Jiang L, Wang F (2014) Enhancement effect of Na ions on capacitive behavior of amorphous MnO2. Electrochim Acta 141:286–293

    Article  CAS  Google Scholar 

  31. Bund A, Neudeck S (2004) Effect of the solvent and the anion on the doping/dedoping behavior of poly(3,4-ethylenedioxythiophene) films studied with the electrochemical quartz microbalance. J Phys Chem B 108(46):17845–17850

    Article  CAS  Google Scholar 

  32. Hillman AR, Daisley SJ, Bruckenstein S (2007) Kinetics and mechanism of the electrochemical p-doping of PEDOT. Electrochem Commun 9(6):1316–1322

    Article  CAS  Google Scholar 

  33. Hillman AR, Daisley SJ, Bruckenstein S (2007) Solvent effects on the electrochemical p-doping of PEDOT. Phys Chem Chem Phys 9(19):2379–2388

    Article  CAS  Google Scholar 

  34. Niu L, Kvarnstrom C, Ivaska A (2004) Mixed ion transfer in redox processes of poly(3,4-ethylenedioxythlophene). J Electroanal Chem 569(2):151–160

    Article  CAS  Google Scholar 

  35. Efimov I, Winkels S, Schultze JW (2001) EQCM study of electropolymerization and redox cycling of 3,4-polyethylenedioxythiophene. J Electroanal Chem 499(1):169–175

    Article  CAS  Google Scholar 

  36. Plieth W, Bund A, Rammelt U, Neudeck S, Duc LM (2006) The role of ion and solvent transport during the redox process of conducting polymers. Electrochim Acta 51(11):2366–2372

    Article  CAS  Google Scholar 

  37. Eliseeva SN, Babkova TA, Kondratiev VV (2009) Mass transfer of ions and solvent at redox processes in poly-3,4-ethylenedioxythiophene films. Russ J Electrochem 45(2):152–159

    Article  CAS  Google Scholar 

  38. Tolstopyatova EG, Pogulaichenko NA, Eliseeva SN, Kondratiev VV (2009) Spectroelectrochemical study of poly-3,4-ethylenedioxythiophene films in the presence of different supporting electrolytes. Russ J Electrochem 45(3):252–262

    Article  CAS  Google Scholar 

  39. Ujvari M, Gubicza J, Kondratiev V, Szekeres KJ, Láng GG (2015) Morphological changes in electrochemically deposited poly(3,4-ethylenedioxythiophene) films during overoxidation. J Solid State Electrochem 19(4):1247–1252

    Article  CAS  Google Scholar 

  40. Láng GG, Ujvári M, Vesztergom S, Kondratiev V, Gubicza J, Szekeres KJ (2016) The electrochemical degradation of poly(3,4-ethylenedioxythiophene) films electrodeposited from aqueous solutions. Z Phys Chem 230:1281–1302

    Article  CAS  Google Scholar 

  41. QCM200 (2004) Operation and Service Manual. Stanford Research Systems, Inc

Download references

Funding

This study received support from the Russian Foundation for Basic Research (grant no. 16-03-00457) and the Hungarian National Research, Development and Innovation Office – NKFI-OTKA (grants nos. K 109036 and VEKOP-2.3.2-16-2017-00013, co-financed by the European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kondratiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizhegorodova, A.O., Eliseeva, S.N., Tolstopjatova, E.G. et al. EQCM study of redox properties of PEDOT/MnO2 composite films in aqueous electrolytes. J Solid State Electrochem 22, 2357–2366 (2018). https://doi.org/10.1007/s10008-018-3950-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3950-y

Keywords

Navigation