Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2329–2338 | Cite as

Electrical conductivity of Sr2-xCaxFeMnO5 (x = 0, 1, 2)

  • Suresh Mulmi
  • Ram Krishna Hona
  • Jacek B. Jasinski
  • Farshid Ramezanipour
Original Paper


Variation of the electrical conductivity due to changes in crystal structure in a series of oxygen-deficient perovskites, Sr2-xCaxFeMnO5 (x = 0, 1, 2), has been investigated. The correlation between structural order and various aspects of electrical conductivity is demonstrated using X-ray and electron diffraction, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and variable-temperature electrical conductivity studies. The increase in structural order from Sr2FeMnO5 to CaSrFeMnO5 and Ca2FeMnO5 affects the cation oxidation states. The XPS data indicate that trivalent Mn is stabilized as the structural order increases. The crystallite size is also correlated with structural order, where the increase in structural order leads to a systematic increase in crystallite size. Electrical conductivity studies were performed in both argon and air atmosphere for all three materials in a wide temperature range, from 298 K (25 °C) to 1073 K (800 °C). At room temperature, there is a direct correlation between ordering and electrical conductivity. Variable-temperature conductivity studies lead to a remarkable observation, where the highest conductivity at elevated temperature belongs to the CaSr compound that has an intermediate degree of structural order. This indicates that there is an optimum degree of ordering that can lead to the highest conductivity at high temperature. Comparison between conductivity studies in air and argon atmosphere indicates that the conductivity of the highly ordered Ca2 compound remains almost unaffected by the change in atmosphere from argon to air. However, the less-ordered CaSr and Sr2 compounds show an increase in conductivity in air compared to the argon atmosphere. Remarkably, the upturn in the conductivity of the less-ordered materials is interrupted and a decrease is observed at high temperature in air, whereas the ordered Ca2 compound shows increase in conductivity in the entire temperature range.


Structural order Electrical conductivity Semiconductor 



F.R. thanks the Conn Center for Renewable Energy Research. This work is supported in part by the National Science Foundation under Cooperative Agreement No. 1355438.


  1. 1.
    Hona RK, Huq A, Ramezanipour F (2017) Unraveling the role of structural order in the transformation of electrical conductivity in Ca2FeCoO6−δ, CaSrFeCoO6−δ, and Sr2FeCoO6−δ. Inorg Chem 56(23):14494–14505CrossRefGoogle Scholar
  2. 2.
    Hona RK, Huq A, Mulmi S, Ramezanipour F (2017) Transformation of structure, electrical conductivity, and magnetism in AA′Fe2O6−δ, A = Sr, Ca and A′ = Sr. Inorg Chem 56(16):9716–9724CrossRefGoogle Scholar
  3. 3.
    Kharton VV, Yaremchenko AA, Kovalevsky AV, Viskup AP, Naumovich EN, Kerko PF (1999) Perovskite-type oxides for high-temperature oxygen separation membranes. J Membr Sci 163(2):307–317CrossRefGoogle Scholar
  4. 4.
    Gómez L, Galeano V, Parra R, Michel CR, Paucar C, Morán O (2015) Carbon dioxide gas sensing properties of ordered oxygen deficient perovskite LnBaCo2O5+δ (Ln=La, Eu). Sensors Actuators B Chem 221(Supplement C):1455–1460CrossRefGoogle Scholar
  5. 5.
    Skinner SJ (2001) Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int J Inorg Mater 3(2):113–121CrossRefGoogle Scholar
  6. 6.
    Ramezanipour F, Greedan JE, Cranswick LMD, Garlea VO, Donaberger RL, Siewenie J (2012) Systematic study of compositional and synthetic control of vacancy and magnetic ordering in oxygen-deficient perovskites Ca2Fe2–xMnxO5+yand CaSrFe2–xMnxO5+y (x = 1/2, 2/3, and 1; y = 0–1/2). J Am Chem Soc 134(6):3215–3227CrossRefGoogle Scholar
  7. 7.
    Ramezanipour F, Cowie B, Derakhshan S, Greedan JE, Cranswick LMD (2009) Crystal and magnetic structures of the brownmillerite compound Ca2Fe1.039(8)Mn0.962(8)O5. J Solid State Chem 182(1):153–159CrossRefGoogle Scholar
  8. 8.
    Ramezanipour F, Greedan JE, Grosvenor AP, Britten JF, Cranswick LMD, Garlea VO (2010) Intralayer cation ordering in a brownmillerite superstructure: synthesis, crystal, and magnetic structures of Ca2FeCoO5. Chem Mater 22(21):6008–6020CrossRefGoogle Scholar
  9. 9.
    Turner S, Verbeeck J, Ramezanipour F, Greedan JE, Van Tendeloo G, Botton GA (2012) Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy. Chem Mater 24(10):1904–1909CrossRefGoogle Scholar
  10. 10.
    Ramezanipour F, Greedan JE, Cranswick LMD, Garlea VO, Siewenie J, King G, Llobet A, Donaberger RL (2012) The effect of the B-site cation and oxygen stoichiometry on the local and average crystal and magnetic structures of Sr2Fe1.9M0.1O5+y (M = Mn, Cr, Co; y = 0, 0.5). J Mater Chem 22(19):9522–9538CrossRefGoogle Scholar
  11. 11.
    Colville AA, Geller S (1971) The crystal structure of brownmillerite, Ca2FeAlO5. Acta Crystallogr B 27(12):2311–2315CrossRefGoogle Scholar
  12. 12.
    Berggren J (1971) Refinement of the crystal structure of dicalcium ferrite, Ca2Fe2O5. Acta Chem Scand 25:3616–3624CrossRefGoogle Scholar
  13. 13.
    Colville AA, Geller S (1972) Crystal structures of Ca2Fe1.43Al0.57O5 and Ca2Fe1.28Al0.72O5. Acta Crystallogr B 28(11):3196–3200CrossRefGoogle Scholar
  14. 14.
    Battle PD, Gibb TC, Lightfoot P (1988) The crystal and magnetic structures of Sr2 Co Fe O5. J Solid State Chem 76(2):334–339CrossRefGoogle Scholar
  15. 15.
    Greaves C, Jacobson AJ, Tofield BC, Fender BEF (1975) A powder neutron diffraction investigation of the nuclear and magnetic structure of Sr2Fe2O5. Acta Crystallogr B 31(3):641–646CrossRefGoogle Scholar
  16. 16.
    Ramezanipour F, Greedan JE, Siewenie J, Donaberger RL, Turner S, Botton GA (2012) A vacancy-disordered, oxygen-deficient perovskite with long-range magnetic ordering: local and average structures and magnetic properties of Sr2Fe1.5Cr0.5O5. Inorg Chem 51(4):2638–2644CrossRefGoogle Scholar
  17. 17.
    Wu JW, Wang J, Liu G, Wu YJ, Liu XQ, Chen XM (2014) Giant room-temperature magnetodielectric coupling in spark plasma sintered brownmillerite ceramics. Appl Phys Lett 105(22):222906CrossRefGoogle Scholar
  18. 18.
    Ramezanipour F, Greedan JE, Siewenie J, Proffen T, Ryan DH, Grosvenor AP, Donaberger RL (2011) Local and average structures and magnetic properties of Sr2FeMnO5+y, y = 0.0, 0.5. Comparisons with Ca2FeMnO5 and the effect of the A-site cation. Inorg Chem 50(16):7779–7791CrossRefGoogle Scholar
  19. 19.
    Toby B (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34(2):210–213CrossRefGoogle Scholar
  20. 20.
    Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS). Report LAUR Los Alamos National Laboratory, Los AlamosGoogle Scholar
  21. 21.
    Gupta RP, Sen SK (1974) Calculation of multiplet structure of core p-vacancy levels. Phys Rev B 10(1):71–77CrossRefGoogle Scholar
  22. 22.
    Gupta RP, Sen SK (1975) Calculation of multiplet structure of core p-vacancy levels. II. Phys Rev B 12(1):15–19CrossRefGoogle Scholar
  23. 23.
    Ghaffari M, Liu T, Huang H, Tan O, Shannon M (2012) Investigation of local structure effect and X-ray absorption characteristics (EXAFS) of Fe (Ti) K-edge on photocatalyst properties of SrTi(1−x)FexO(3−δ). Mater Chem Phys 136(2–3):347–357CrossRefGoogle Scholar
  24. 24.
    Moulder JF, Chastain J, King RC (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. PerkinElmer, Eden PrairieGoogle Scholar
  25. 25.
    Ren P, Maso N, West AR (2013) Hole conductivity in oxygen-excess BaTi1-xCaxO3-x+δ. Phys Chem Chem Phys 15(48):20943–20950CrossRefGoogle Scholar
  26. 26.
    Ren P, Maso N, Liu Y, Ma L, Fan H, West AR (2013) Mixed oxide ion and proton conduction and p-type semiconduction in BaTi0.98Ca0.02O2.98 ceramics. J Mater Chem C 1(13):2426–2432CrossRefGoogle Scholar
  27. 27.
    Patrakeev MV, Leonidov IA, Kozhevnikov VL, Poeppelmeier KR (2005) p-Type electron transport in La1−xSrxFeO3−δ at high temperatures. J Solid State Chem 178(3):921–927CrossRefGoogle Scholar
  28. 28.
    Kozhevnikov VL, Leonidov IA, Patrakeev MV, Mitberg EB, Poeppelmeier KR (2000) Electrical properties of the ferrite SrFeOy at high temperatures. J Solid State Chem 158(2):320–326CrossRefGoogle Scholar
  29. 29.
    Patrakeev MV, Kharton VV, Bakhteeva YA, Shaula AL, Leonidov IA, Kozhevnikov VL, Naumovich EN, Yaremchenko AA, Marques FMB (2006) Oxygen nonstoichiometry and mixed conductivity of SrFe1−xO3−δ (M=Al, Ga): effects of B-site doping. Solid State Sci 8(5):476–487CrossRefGoogle Scholar
  30. 30.
    Asenath-Smith E, Misture ST, Edwards DD (2011) Structural behavior and thermoelectric properties of the brownmillerite system Ca2(ZnxFe2−x)O5. J Solid State Chem 184(8):2167–2177CrossRefGoogle Scholar
  31. 31.
    Asenath-Smith E, Lokuhewa IN, Misture ST, Edwards DD (2010) p-Type thermoelectric properties of the oxygen-deficient perovskite Ca2Fe2O5 in the brownmillerite structure. J Solid State Chem 183(7):1670–1677CrossRefGoogle Scholar
  32. 32.
    Chen Z, Ran R, Zhou W, Shao Z, Liu S (2007) Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. Electrochim Acta 52(25):7343–7351CrossRefGoogle Scholar
  33. 33.
    Armstrong T, Prado F, Manthiram A (2001) Synthesis, crystal chemistry, and oxygen permeation properties of LaSr3Fe3−xCoxO10 (0≤x≤1.5). Solid State Ionics 140(1–2):89–96CrossRefGoogle Scholar
  34. 34.
    Andoulsi R, Horchani-Naifer K, Férid M (2013) Electrical conductivity of La1−xCaxFeO3−δ solid solutions. Ceram Int 39(6):6527–6531CrossRefGoogle Scholar
  35. 35.
    Pizzini S (2015) Physical chemistry of semiconductor materials and processes. Wiley, West SussexCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of LouisvilleLouisvilleUSA
  2. 2.Conn Center for Renewable EnergyUniversity of LouisvilleLouisvilleUSA

Personalised recommendations