Skip to main content
Log in

Investigation of rate-determining step of LaNi0.6Co0.4O3-δ film electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The rate-determining step (RDS) in the oxygen reduction process on a LaNi0.6Co0.4O3-δ film electrode was analyzed using electrochemical impedance spectroscopy in varied temperatures (873–1073 K), oxygen partial pressures (1–10−3 bar), and DC bias. From the evaluation of the area-specific interfacial conductivity, σE, and chemical capacitance, CE, it is suggested that the RDS is surface reaction under low p(O2) (10−2–10−3 bar) but there appears a contribution of bulk diffusion under high p(O2) in the film electrode at any given temperature. The change of the RDS was also confirmed using isotope exchange depth profile method where a significant change in the oxygen profile in the film electrode was observed. This is attributed to the rate of the bulk diffusion of O2− which is almost constant when the oxygen nonstoichiometry of LaNi0.6Co0.4O3-δ is small, whereas the surface reaction rate strongly depends on p(O2). At low p(O2), the surface reaction is slower than the bulk diffusion, so that the potential drop on the surface of the electrode film is large. In contrast, at high p(O2), the surface reaction is faster than the bulk diffusion where the potential decay is sluggish inside the film electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hjalmarsson P, Sogaard M, Hagen A, Mogensen M (2008) Structural properties and electrochemical performance of strontium- and nickel-substituted lanthanum cobaltite. Solid State Ionics 179(17-18):636–646

    Article  CAS  Google Scholar 

  2. Hjalmarsson P, Mogensen M (2011) La0.99Co0.4Ni0.6O3−δ–Ce0.8Gd0.2O1.95 as composite cathode for solid oxide fuel cells. J Power Sources 196(17):7237–7244

    Article  CAS  Google Scholar 

  3. Nagamoto H, Mochida I, Kagotani K, Inoue H (1993) Change of thermal expansion coefficient and electrical conductivity of LaCo1xMxO3 (M = Fe, Ni). J Mater Res 8(12):3158–3162

    Article  CAS  Google Scholar 

  4. Li Y, Cai JW, Alonso JA, Lian HQ, Cui XG, Goodenough JB (2017) Evaluation of LaNi0.6M0.4O3 (M = Fe, Co) cathodes in LSGM-electrolyte-supported solid-oxide full cells. Int J Hydrog Energy 42(44):27334–27342

    Article  CAS  Google Scholar 

  5. Hrovat M, Katsarakis N, Reichmann K, Bernik S, Kuscer D, Holc J (1996) Characterisation of LaNi1-xCoxO3 as a possible SOFC cathode material. Solid State Ionics 83(1-2):99–105

    Article  CAS  Google Scholar 

  6. Uzumaki Y, Hashimoto S, Nakamura T, Yashiro K, Amezawa K, Kawada T (2013) Oxygen nonstoichiometry and electrochemical properties in a thin film of nickel substituted lanthanum cobaltite for SOFCs. ECS Trans 57(1):1893–1899

    Article  CAS  Google Scholar 

  7. Budiman RA, Uzumaki Y, Hong HJ, Miyazaki T, Hashimoto S, Nakamura T, Yashiro K, Amezawa K, Kawada T (2016) Oxygen nonstoichiometry and transport properties of LaNi0.6Co0.4O3−δ. Solid State Ionics 292:52–58

    Article  CAS  Google Scholar 

  8. Baumann FS, Fleig J, Habernerier HU, Maier J (2006) Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes. Solid State Ionics 177(11-12):1071–1081

    Article  CAS  Google Scholar 

  9. Budiman RA, Miyazaki T, Hashimoto S, Nakamura T, Yashiro K, Amezawa K, Kawada T (2015) Electrochemical study of LaNi0.6Fe0.4O3-δ film electrode. J Electrochem Soc 162(14):F1445–F1450

    Article  CAS  Google Scholar 

  10. Kawada T, Masuda K, Suzuki J, Kaimai A, Kawamura K, Nigara Y, Mizusaki J, Yugami H, Arashi H, Sakai N, Yokokawa H (1999) Oxygen isotope exchange with a dense La0.6Sr0.4CoO3−δ electrode on a Ce0.9Ca0.1O1.9 electrolyte. Solid State Ionics 121(1-4):271–279

    Article  CAS  Google Scholar 

  11. Kawada T, Suzuki J, Sase M, Kaimai A, Yashiro K, Nigara Y, Mizusaki J, Kawamura K, Yugami H (2002) Determination of oxygen vacancy concentration in a thin film of La0.6Sr0.4CoO3−δ by an electrochemical method. J Electrochem Soc 149(7):E252–E259

    Article  CAS  Google Scholar 

  12. Sase M, Suzuki J, Yashiro K, Otake T, Kaimai A, Kawada T, Mizusaki J, Yugami H (2006) Electrode reaction and microstructure of La0.6Sr0.4CoO3−δ thin films. Solid State Ionic 177(19-25):1961–1964

    Article  CAS  Google Scholar 

  13. Chueh WC, Haile SM (2009) Electrochemical studies of capacitance in cerium oxide thin films and its relationship to anionic and electronic defect densities. Phys Chem Chem Phys 11(37):8144–8148

    Article  CAS  PubMed  Google Scholar 

  14. Budiman RA, Hashimoto S, Nakamura T, Yashiro K, Bagarinao KD, Kishimoto H, Yamaji K, Horita T, Amezawa K, Kawada T (2017) Oxygen reduction reaction process of LaNi0.6Fe0.4O3−δ film–porous Ce0.9Gd0.1O1.95 heterostructure electrode. Solid State Ionic 312:80–87

    Article  CAS  Google Scholar 

  15. Amezawa K, Fujimaki Y, Nakamura T, Bagarinao KD, Yamaji K, Nitta K, Terada Y, Iguchi F, Yashiro H, Kawada T (2015) Determination of effective reaction area in a mixed-conducting SOFC cathode. ECSTrans 66:129–135

    CAS  Google Scholar 

  16. Fujimaki Y, Nakamura T, Bagarinao KD, Yamaji K, Yashiro K, Kawada T, Iguchi F, Yugami H, Amezawa K (2015) ECSTrans 68:623–630

    CAS  Google Scholar 

  17. Jamnik J, Maier J (1999) Treatment of the impedance of mixed conductors equivalent circuit model and explicit approximate solutions. J Electrochem Soc 146(11):4183–4188

    Article  CAS  Google Scholar 

  18. Jamnik J, Maier J (2001) Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys Chem Chem Phys 3(9):1668–1678

    Article  CAS  Google Scholar 

  19. Nakamura T, Yashiro K, Kaimai A, Otake T, Sato K, Kawada T, Mizusaki J (2008) Electrochemical behaviors of mixed conducting oxide anodes for solid oxide fuel cell. J Electrochem Soc 155(12):B1244–B1250

    Article  CAS  Google Scholar 

  20. Adler SB (2004) Factor governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104(10):4791–4844

    Article  CAS  PubMed  Google Scholar 

  21. Sereda VV, Tsvetkov DS, Ivanov IL, Zuev AY (2015) Oxygen nonstoichiometry, defect structure and related properties of LaNi0.6Fe0.4O3-δ. J Mater Chem A 3(11):6028–6037

    Article  CAS  Google Scholar 

  22. Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H (1989) Nonstoichiometry of the perovskite-type oxides La1-xSrxCoO3-δ. J Solid State Chem 80(1):102–111

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by JST, Japan, as part of the “Phase Interface Science for Highly Efficient Energy Utilization” project in strategic basic research program, CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Budiman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budiman, R.A., Uzumaki, Y., Hashimoto, S. et al. Investigation of rate-determining step of LaNi0.6Co0.4O3-δ film electrode. J Solid State Electrochem 22, 2227–2235 (2018). https://doi.org/10.1007/s10008-018-3935-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3935-x

Keywords

Navigation