Skip to main content
Log in

Oxygen isotope exchange in praseodymium nickelate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Oxygen surface exchange kinetics and diffusion were studied in Pr2NiO4 + δ (PNO) by the isotope exchange method with gas phase equilibration in the temperature range of 600–800 °C and oxygen pressure range of 0.33–1.62 kPa. The oxygen heterogeneous exchange rate (rH), oxygen diffusion coefficient (D), rates of oxygen dissociative adsorption (ra), and oxygen incorporation (ri) were calculated along with the apparent activation energies of oxygen surface exchange and diffusion processes. The temperature dependence of rH was found to benon-linear in Arrhenius coordinates. The apparent activation energy changed from 1.4 ± 0.2 eV at T > 700 °C to 2.0 ± 0.1 eV. This might be attributed to the change in the rate-determining stage of oxygen exchange for Pr2NiO4 + δ at T ~ 700 °C, because of a shift in the ratio between ra and ri caused by the difference in their activation energies. Possible reasons for the observed changes in the rate-determining stage are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fergus JW, Hui R, Li X, Wilkinson DP, Zhang J (2009) Solid oxide fuel cells: materials properties and performance. Taylor & Francis Group, p 295

  2. Pikalova EY, Bogdanovich NM, Kolchugin AА, Osinkin DA, Bronin DI (2014) Electrical and electrochemical properties of La2NiO4+δ-based cathodes in contact with Ce0.8Sm0.2O2-δ electrolyte. Procedia Eng 98:105–110

    Article  CAS  Google Scholar 

  3. Ruddlesden SN, Popper P (1957) New compounds of the K2NiF4 type. Acta Crystallogr 10(7):538–539

    Article  CAS  Google Scholar 

  4. Rabenau A, Eckerlin F (1958) Die K2NiF4-Struktur beim La2NiO4. Acta Crystallogr 11(4):304–306

    Article  CAS  Google Scholar 

  5. Kovalevsky AV, Kharton VV, Yaremchenko AA, Pivak YV, Tsipis EV, Yakovlev SO, Markov AA, Naumovich EN, Frade JR (2007) Oxygen permeability, stability and electrochemical behavior of Pr2NiO4+δ–based materials. Electroceram 18(3-4):205–218

    Article  CAS  Google Scholar 

  6. Sadykov VA, Muzykantov VS, Yeremeev NF, Pelipenko VV, Sadovskaya EM, Bobin AS, Fedorova YE, Amanbaeva DG, Smirnova AL (2015) Solid oxide fuel cell cathodes: importance of chemical composition and morphology. Catal Sustain Energy 2:57–70

    Google Scholar 

  7. Bershitskaya NM, Ananyev MV, Kurumchin EK, Gavrilyuk AL, Pankratov AA (2013) Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium manganites. Russ J Electrochem 49(10):963–974

    Article  CAS  Google Scholar 

  8. Porotnikova NM, Ananyev MV, Kurumchin EK (2011) Effect of defect structure of lanthanum manganite on oxygen exchange kinetics and diffusion. Russ J Electrochem 47(11):1250–1256

    Article  CAS  Google Scholar 

  9. Zhao H, Li Q, Sun L (2011) Ln2MO4 cathode materials for solid oxide fuel cells. Inorganic Solid State Chem Energy Mater 54(6):898–910

    CAS  Google Scholar 

  10. Mauvy F, Lalanne C, Bassat JM, Grenier JC, Zhao H, Dordor P, Stevens PH (2005) Oxygen reduction on porous Ln2NiO4+δ electrodes. J Eur Ceram Soc 25(12):2669–2672

    Article  CAS  Google Scholar 

  11. Vashook V, Tolochko SP, Yushkevich II, Makhnach LV, Kononyuk IF, Altenburg H, Hauck J, Ullmann H (1998) Oxygen nonstoichiometry and electrical conductivity of the solid solutions La2−xSrxNiOy (0≤x≤0.5). Solid State Ionics 110(3-4):245–253

    Article  CAS  Google Scholar 

  12. Anan’ev MV, Kurumchin EK, Vdovin GK, Bershitskaya NM (2012) Kinetics of interaction of gas phase oxygen with cerium–gadolinium oxide. Russ J Electrochem 48(9):871–878

    Article  CAS  Google Scholar 

  13. Wang Y, Zhao X, Lü S, Yu B, Meng X, Zhang Y, Yang J, Fuc C, Jic Y (2014) (Pr0.9La0.1)2(Ni0.74Cu 0.21Ga0.05)O4+δ as cathode material for CeO2-based intermediate-temperature solid-oxide fuel cell. Ceram Int 40(5):7321–7327

    Article  CAS  Google Scholar 

  14. Bassat JM, Odier P, Villesuzanne A, Marin C, Pouchard M (2004) Anisotropic ionic transport properties in La2NiO4+δ single crystals. Solid State Ionics 167(3–4):341–347

    Article  CAS  Google Scholar 

  15. Boehm E, Bassat JM, Dordor P, Mauvy F, Grenier JC, Stevens PH (2005) Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4+δ oxides. Solid State Ionics 176(37-38):2717–2725

    Article  CAS  Google Scholar 

  16. Skinner SJ, Kilner JA (2000) Oxygen diffusion and surface exchange in La2−xSr x NiO4+δ. Solid State Ionics 135(1):709–712

    Article  CAS  Google Scholar 

  17. Zhao H, Mauvy F, Lalanne C, Bassat JM, Fourcade S, Grenier JC (2008) New cathode materials for ITSOFC: phase stability, oxygen exchange and cathode properties of La2−xNiO4+δ. Solid State Ionics 179(35–36):2000–2005

    Article  CAS  Google Scholar 

  18. Gauquelin N (2010) Ph.D. in chemistry of the University of Rennes and Ph.D. in physical chemistry of the RWTH Aachen. Impact of anisotropy on oxygen diffusion and high-temperature surface modification of La2NiO4+d single crystals. P. 226

  19. Burriel M, Garcia G, Santiso J, Kilner JA, Chater RJ, Skinner SJ (2008) Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+δ. J Mater Chem 18:416–422

    Article  CAS  Google Scholar 

  20. Kilner JA, Shaw CKM (2002) Mass transport in La2Ni1−xCoxO4+δ oxides with the K2NiF4 structure. Solid State Ionics (154–155): 523–527

  21. Ananyev MV, Tropin ES, Eremin VA, Farlenkov AS, Smirnov AS, Kolchugin AA, Porotnikova NM, Khodimchuk AV, Berenov AV, Kurumchin EK (2016) Oxygen isotope exchange in La2NiO4±δ. Phys Chem Chem Phys 18(13):9102–9111

    Article  CAS  PubMed  Google Scholar 

  22. Bouwmeester HJM, Song CH, Zhu J, Yi J, Annaland MS, Boukamp BA (2009) A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. Phys Chem Chem Phys 11(42):9640–9643

    Article  CAS  PubMed  Google Scholar 

  23. Kurumchin EK, Ananjev MV, Vdovin GK, Surkova MG (2010) Exchange kinetics and diffusion of oxygen in systems based on lanthanum gallate. Russ J Electrochem 46(2):205–211

    Article  CAS  Google Scholar 

  24. Anan’ev MV, Kurumchin EK, Porotnikova NM (2010) Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium cobaltites. Russ J Electrochem 46(7):789–797

    Article  CAS  Google Scholar 

  25. Ezin AN, Tsidilkovski VI, Kurumchin EK (1996) Isotopic exchange and diffusion of oxygen in oxides with different bulk and subsurface diffusivities. Solid State Ionics 84(1-2):105–112

    Article  CAS  Google Scholar 

  26. Klier K, Kucera E (1966) Theory of exchange reactions between fluids and solids with tracer diffusion in the solid. J Phys Chem Solids 27(6-7):1087–1095

    Article  CAS  Google Scholar 

  27. Boreskov GK, Kasatkina LA (1968) Catalysis of isotope exchange in molecular oxygen and its application to the study of catalysts. Russ Chem Rev 37(8):613–628

    Article  Google Scholar 

  28. Muzykantov VS, Panov GI, Boreskov GK (1973) Determination of the types of homo-molecular oxygen exchange on oxides. Kinet Katal 14:948–955

    CAS  Google Scholar 

  29. Klier K, Novakova J, Jiru P (1963) Exchange reactions of oxygen between oxygen molecules and solid oxides. J Catal 2(6):479–484

    Article  CAS  Google Scholar 

  30. den Otter MW, Boukamp BA, Bouwmeester HJM (2001) Theory of oxygen isotope exchange. Solid State Ionics 139(1-2):89–94

    Article  Google Scholar 

  31. Farlenkov AS, Ananyev MV, Eremin VA, Porotnikova NM, NM KEK, Melekh B-T (2016) Oxygen isotope exchange in doped calcium and barium zirconates. Solid State Ionics 290:108–115

    Article  CAS  Google Scholar 

  32. Odier P, Allanion Ch BJM (2000) Oxygen exchange in Pr2NiO4+δ at high temperature and direct formation of Pr4Ni3O10−x. J Solid State Chem 153(2):381–385

    Article  CAS  Google Scholar 

  33. Broux TH, Prestipino C, Bahout M, Paofai S, Elkaïm E, Vibhu V, Grenier JC, Rougier A, Bassat JM, Hernandez O (2016) Structure and reactivity with oxygen of Pr2NiO4+δ: an in situ synchrotron X-ray powder diffraction study. Dalton Trans 45(7):3024–3033

    Article  CAS  PubMed  Google Scholar 

  34. Bassat JM, Burriel M, Wahyudi O, Castaing R, Ceretti M, Veber Ph, Weill I, Villesuzanne A, Grenier JC, Paulus W, Kilner JA (2013) Anisotropic oxygen diffusion properties in Pr2NiO4+δ and Nd2NiO4+δ single crystals. J Phys Chem C117: 26466–26472

  35. Ananyev MV, Eremin VA, Tsvetkov DS, Porotnikova NM, Farlenkov AS, Zuev AY, Fetisov AV, Kurumchin EK (2017) Oxygen isotope exchange and diffusion in LnBaCo2O6−δ (ln = Pr, Sm, Gd) with double perovskite structure. Solid State Ionics 304:96–106

    Article  CAS  Google Scholar 

  36. Druce J, Ishihara T, Kilner J (2014) Surface composition of perovskite-type materials studied by low energy ion scattering (LEIS). Solid State Ionics 262:893–896

    Article  CAS  Google Scholar 

  37. Buttrey DJ, Ganguly P, Honig JM, Rao CNR, Schartman RR, Subbanna GN (1988) Oxygen excess in layered lanthanide nickelates. J Solid State Chem 74(2):233–238

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The facilities of the shared access centers “Composition of Compounds” of IHTE UB RAS and “Ural-M” of IMET UB RAS were used in this work. The PNO synthesis is supported by the Research Programs of Ural Branch of RAS (Project No 15-20-3-15). The isotope exchange study is supported by the grant of the Russian Science Foundation (Project number no. 16-13-00053). This work is partly financially supported by Scholarship of Russian President 2018-2020. The educational activities of Ph.D. and master students involved into this work are supported by the Act 211 of the Government of the Russian Federation, Agreement No. 02.A03.21.0006.

Funding

This work is partly financially supported by Scholarship of Russian President 2018-2020. The educational activities of Ph.D. and master students involved into this work are supported by the Act 211 of the Government of the Russian Federation, Agreement No. 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Porotnikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porotnikova, N.M., Khodimchuk, A.V., Ananyev, M.V. et al. Oxygen isotope exchange in praseodymium nickelate. J Solid State Electrochem 22, 2115–2126 (2018). https://doi.org/10.1007/s10008-018-3919-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3919-x

Keywords

Navigation