Skip to main content
Log in

Combined effect of inherent residual chloride and bound water content and surface morphology on the intrinsic electron-transfer activity of ruthenium oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

RuO2 is an unparalleled electrode with wider applications. Chloride, bound water, and surface stoichiometry are the inherent residues of RuO2 left upon the high-temperature pyrolysis of a RuCl3xH2O precursor. Although the electrocatalytic properties of RuO2 for specific applications have been studied extensively, there is a paucity of studies linking the intrinsic electron-transfer (ET) activity of RuO2 with the oxide preparation temperature-dependent inherent residual parameters. This paper presents the intrinsic ET activity-oxide residue correlations for RuO2 electrodes. The ET kinetic parameters were estimated using a surface oxide-sensitive Fe3+/Fe2+ redox probe by rotating disc electrode voltammetry. Oxide powder-based electrodes (RuO2 powder-PVC/Pt-modified electrodes), which were fabricated conveniently at room temperature even with high-temperature oxides, were used instead of the traditional thermally prepared electrodes to circumvent the primary problems at the coating|support interface and inefficient chloride removal. RuO2 powders prepared at five temperatures (Tprep), i.e., 300, 400, 500, 600, and 700 °C, were used for electrode fabrication. The results showed that the electron exchange rate was highest for the 400 °C RuO2 electrode, and it was independent of the Tprep in the range 500 to 700 °C. The oxide powders were characterized using a range of techniques. The measured intrinsic ET activity and the associated structural correlation over the Tprep range 300–700 °C suggest that the best activity of the 400 °C electrode can be attributed to the optimal chloride and bound water contents in a completely formed rutile surface layer containing the catalyst sites of a particular nature with the highest electroactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Over H (2012) Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. Chem Rev 112:3356–3426

    Article  CAS  PubMed  Google Scholar 

  2. Trasatti S (1994) In: Lipkowski J, Ross PN (eds) The electrochemistry of novel materials. New York, VCH

    Google Scholar 

  3. Panic VV, Dekanski AB, Vidakovic TR, Miskovic-Stankovic VB, Javanovic BZ, Nikolic BZ (2005) Oxidation of phenol on RuO2-TiO2 anodes. J Solid State Electrochem 9(1):43–54

    Article  CAS  Google Scholar 

  4. Popic JP, Avramov-Ivic ML, Vukovic NB (1997) Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3. J Electroanal Chem 421(1–2):105–110

    Article  CAS  Google Scholar 

  5. Bergmann H, Koparal S (2005) The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection. Electrochim Acta 50(25–26):5218–5228

    Article  CAS  Google Scholar 

  6. Wang H, Wang JL (2008) The cooperative electrochemical oxidation of chlorophenols in anode–cathode compartments. J Hazard Mater 154(1–3):44–50

    Article  CAS  PubMed  Google Scholar 

  7. Zhuiykov S (2008) Morphology and sensing characteristics of nanostructured RuO2 electrodes for integrated water quality monitoring sensors. Electrochem Commun 10(6):839–843

    Article  CAS  Google Scholar 

  8. Chandrasekara Pillai K, Senthil Kumar A, Zen J-M (2000) Nafion–RuO2–Ru(bpy)3 2+ composite electrodes for efficient electrocatalytic water oxidation. J Mol Cat A Chem 160(2):277–285

    Article  Google Scholar 

  9. Yamane S, Kato N, Kojima S, Imanishi A, Ogawa S, Yoshida N, Nonomura S, Nakato Y (2009) Efficient solar water splitting with a composite “n-Si/p-CuI/n-i-p a-Si/n-p GaP∕RuO2” semiconductor electrode. J Phys Chem C 113(32):14575–14581

    Article  CAS  Google Scholar 

  10. Puthiyapura VK, Pasupathi S, Basu S, Wu X, Su H, Varagunapandiyan N, Pollet B, Scott K (2013) RuxNb1LxO2 catalyst for the oxygen evolution reaction in proton exchange membrane water electrolysers. Int J Hydrog Energy 38(21):8605–8616

    Article  CAS  Google Scholar 

  11. Zheng JP, Tiwari V (2017) Deposition of Pt and Pt-Ru nanoparticles on RuO2.xH2O using microwave method for direct methanol fuel cells. J Clean Energy Tech 5(3):183–187

    Article  CAS  Google Scholar 

  12. Jung SH, Kim DH, Brüner P, Lee H, Hah HJ, Kim SK, Jung YS (2017) Extremely conductive RuO2-coated LiNi0.5Mn1.5O4 for lithium-ion batteries. Electrochim Acta 232:236–243

    Article  CAS  Google Scholar 

  13. Balach J, Jaumann T, Mühlenhoff S, Eckert J, Giebeler L (2016) Enhanced polysulphide redox reaction using a RuO2 nanoparticle-decorated mesoporous carbon as functional separator coating for advanced lithium–sulphur batteries. Chem Commun 52(52):8134–8137

    Article  CAS  Google Scholar 

  14. Gobal F, Faraji M (2015) RuO2/MWCNT/ stainless steel mesh as a novel positive electrode in vanadium redox flow batteries. RSC Adv 5(84):68378–68384

    Article  CAS  Google Scholar 

  15. Han ZJ, Pineda S, Murdock AT, Seo DH, Ostrikov K, Bendavid A (2017) RuO2-coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. J Mater Chem A 5(33):17293–17301

    Article  CAS  Google Scholar 

  16. Lenz J, Trieu V, Hempelmann V, Kuhn A (2011) Ordered macroporous ruthenium oxide electrodes for potentiometric and amperometric sensing applications. Electroanalysis 23(5):1186–1192

    Article  CAS  Google Scholar 

  17. Wu J, Suls J, Sansen W (2000) Amperometric determination of ascorbic acid on screen-printing ruthenium dioxide electrode. Electrochem Commun 2(2):90–93

    Article  CAS  Google Scholar 

  18. Ishiju T, Chipwan DW, Takahashi T, Takahashi K (2001) Amperometric sensor for monitoring of dissolved carbon dioxide in sea water. Sensors Actuators B Chem 76(1–3):265–269

    Article  Google Scholar 

  19. Shankara Narayanan J, Anjalidevi C, Dharuman V (2013) Nonenzymatic glucose sensing at ruthenium dioxide–poly(vinyl chloride)–Nafion composite electrode. J Solid State Electrochem 17(4):937–947

    Article  CAS  Google Scholar 

  20. Galizzioli D, Tantardini F, Trasatti S (1975) Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions. J App Electrochem 5(3):203–214

    Article  CAS  Google Scholar 

  21. Savinell RF, Zeller RL III, Adams JA (1990) Electrochemically active surface area—voltammetric charge correlations for ruthenium and iridium dioxide electrodes. J Electrochem Soc 137:489–494

    Article  CAS  Google Scholar 

  22. Ferro S, Urgeghe C, De Battisti A (2004) Heterogeneous electron-transfer rate constants for Fe(H2O)6 3+/2+ at metal oxide electrodes. J Phys Chem B 108:6398–6401

    Article  CAS  PubMed  Google Scholar 

  23. Parker JF, Kamm GE, McGovern AD, DeSario PA, Rolison DR, Lytle JC, Long JW (2017) Rewriting electron-transfer kinetics at pyrolytic carbon electrodes decorated with nanometric ruthenium oxide. Langmuir 33(37):9416–9425

    Article  CAS  PubMed  Google Scholar 

  24. Vercesi GP, Rolewicz J, Comninellis C (1991) Characterization of DSA-type oxygen evolving electrodes. Choice of base metal. Thermochim Acta 176:31–47

    Article  CAS  Google Scholar 

  25. Pizzini S, Buzzanca G, Mari C, Rossi L, Torchio S (1972) Preparation, structure and electrical properties of thick ruthenium dioxide films. Mater Res Bull 7(5):449–462

    Article  CAS  Google Scholar 

  26. Lodi G, Bighi C, de Asmundis C (1976) Deposition and characterization of RuO2 films on various substrates. Mater Chem 1(2):177–187

    Article  CAS  Google Scholar 

  27. Lodi G, Zucchini C, de Battisti A, Sivieri E, Trasatti S (1978) On some debated aspects of the behaviour of RuO2 film electrodes. Mater Chem 3(3):179–188

    Article  CAS  Google Scholar 

  28. Panić VV, Dekanski AB, Mišković-Stanković VB, Milonjić SK, Nikolić BZ (2003) The role of titanium oxide concentration profile of titanium oxide of RuO2-TiO2 coatings obtained by the sol-gel procedure on its electrochemical behavior. J Serb Chem Soc 68:979–988

    Article  Google Scholar 

  29. Panić V, Dekanski A, Mišković-Stanković VB, Milonjić S, Nikolić B (2005) On the deactivation mechanism of RuO2–TiO2/Ti anodes prepared by the sol–gel procedure. J Electroanal Chem 579(1):67–76

    Article  CAS  Google Scholar 

  30. Ferro S, De Battisti A (2002) Electrocatalysis and chlorine evolution reaction at ruthenium dioxide deposited on conductive diamond. J Phys Chem B 106(9):2249–2254

    Article  CAS  Google Scholar 

  31. Ardizzone S, Fregonara G, Trasatti S (1990) “Inner” and “outer” active surface of RuO2 electrodes. Electrochim Acta 35(1):263–276

    Article  CAS  Google Scholar 

  32. Weston JE, Steele BCH (1980) Proton diffusion in crystalline ruthenium dioxide. J Appl Electrochem 10(1):49–53

    Article  CAS  Google Scholar 

  33. Allhusen JS, Conboy JC (2013) Preparation and characterization of conductive and transparent ruthenium dioxide sol−gel films. ACS Appl Mater Interfaces 5(22):11683–11691

    Article  CAS  PubMed  Google Scholar 

  34. Patake VD, Lokhande CD, Joo OS (2009) Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl Sur Sci 255(7):4192–4196

    Article  CAS  Google Scholar 

  35. Zhao G, Zhang L, Sun K, Li H (2014) Free-standing Pt@RuO2.xH2O nanorod arrays on Si wafers as electrodes for methanol electro-oxidation. J Power Sources 245:892–897

    Article  CAS  Google Scholar 

  36. Senthil Kumar A, Chandrasekara Pillai K (2000) Studies of electrochemical of RuO2-PVC film electrodes: dependence on oxide preparation temperature. J Solid State Electrochem 4(7):408–416

    Article  Google Scholar 

  37. Dharuman V, Chandrasekara Pillai K (1997) Glucose oxidation at Pt/PVC-bonded RuO2 composite electrode. Indian J Chem Technol 4:25–28

    CAS  Google Scholar 

  38. Dharuman V, Chandrasekara Pillai K (1999) Oxidation of D-glucose at RuO2-PVC paste electrode in 1M NaOH—dependence on oxide preparation temperature. Bull Electrochem 15:476–480

    CAS  Google Scholar 

  39. Dharuman V, Chandrasekara Pillai K (2006) RuO2 electrode surface effects in electrocatalytic oxidation of glucose. J Solid State Electrochem 10(12):967–979

    Article  CAS  Google Scholar 

  40. Levich VG (1972) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  41. Chen P, McCreery RL (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68(22):3958–3965

    Article  CAS  Google Scholar 

  42. Randles JEB (1959) The determination of kinetic parameters of redox reactions from current-potential curves. Can J Chem 37(1):238–246

    Article  CAS  Google Scholar 

  43. Tanaee H, Fukushima S (1984) Effect of surface structure on the electrochemical properties of Ni-metal complex oxide film electrode. Electrochim Acta 29(9):1173–1179

    Article  Google Scholar 

  44. Conway BE (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138(6):1539–1548

    Article  CAS  Google Scholar 

  45. Zengh JP, Cygan CJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699–2703

    Article  Google Scholar 

  46. Ilangovan G, Chandrasekara Pillai K (1997) Electrochemical and XPS characterization of glassy carbon electrode surface effects on the preparation of a monomeric molybdate(VI)-modified electrode. Langmuir 13(3):566–575

    Article  CAS  Google Scholar 

  47. McKeown DA, Hagans PL, Carette LPL, Russell AE, Swider KE, Rolison DR (1999) Structure of hydrous ruthenium oxides: implications for charge storage. J Phys Chem B 103(23):4825–4832

    Article  CAS  Google Scholar 

  48. Mills A, McMurray N (1988) Characterisation of an RuO2·xH2O colloid and evaluation of its ability to mediate the oxidation of water. J Chem Soc Far Trans I 84(2):379–390

    Article  CAS  Google Scholar 

  49. Long JW, Swider KE, Merzbacher CI, Rolison DR (1999) Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15(3):780–785

    Article  CAS  Google Scholar 

  50. Nakamoto K (1963) Infrared spectra of inorganic coordination compounds. Wiley, New York

    Google Scholar 

  51. Yukhnevich GV (1963) Advances in application of infrared spectroscopy to characterisation of OH bonds. Russ Chem Rev 32(11):619–633

    Article  Google Scholar 

  52. Hameka HF, Jensen JO, Kay JG, Rosenthal CM, Zimmerman GL (1991) Theoretical prediction of geometries and vibrational infrared spectra of ruthenium oxide molecules. J Mol Spectros 150(1):218–221

    Article  CAS  Google Scholar 

  53. McEvoy AJ, Gissler W (1982) ESCA spectra and electronic properties of some ruthenium compounds. Phys Stat Sol (A) 69(1):K91–K96

    Article  CAS  Google Scholar 

  54. Augustynski J, Balsenc L, Hinden J (1978) X-ray photoelectron spectroscopic studies of RuO2-based film electrodes. J Electrochem Soc 125(7):1093–1097

    Article  CAS  Google Scholar 

  55. Atanasoska LJ, O’Grady WE, Atanasoski RT, Pollak FH (1988) The surface structure of RuO2: a leed, auger and XPS study of the (110) and (100) faces. Sur Sci 202:142–166

    Article  CAS  Google Scholar 

  56. Rolison DR, Hagans PL, Swider KE, Long JW (1999) Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 15(3):774–779

    Article  CAS  Google Scholar 

  57. Fletcher JM, Gardner WE, Greenfield BF, Holdoway MJ, Rand MH (1968) Magnetic and other studies of ruthenium dioxide and its hydrate. J Chem Soc A 0:653–657

    Article  CAS  Google Scholar 

  58. Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36(2):225–241

    Article  CAS  Google Scholar 

  59. Scholz F (2002) Electroanalytical methods: guide to experiments and applications. Springer, Berlin

    Google Scholar 

  60. Etman M, Levart E, Schumann D (1979) Convective-diffusion impedance for a partially blocked rotating-disc electrode. J Electroanal Chem 101(2):141–152

    Article  Google Scholar 

  61. Caprani A, Frayer JP (1982) Interactions between oxygen reduction and titanium dissolution in aerated hydrochloric acid: topographic implications. J Electroanal Chem 138(1):155–176

    Article  CAS  Google Scholar 

  62. Weber J, Samec Z, Mareček V (1978) The effect of anion adsorption on the kinetics of the reaction on Pt and Au electrodes in HClO4. J Electroanal Chem 89(2):271–288

    Article  CAS  Google Scholar 

  63. Weaver MJ, Anson FC (1975) Double-layer effects on simple electrode reactions. II The effects of specifically adsorbed anions and ion-pairing on the reduction of Eu3+ and Cr3+. J Electroanal Chem 65(2):737–758

    Article  CAS  Google Scholar 

  64. Wang Y, Wöll C (2017) IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. Chem Soc Rev 46(7):1875–1932

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.C.P thanks the Korea Federation of Science and Technology Societies (KOFST, Republic of Korea) for the offer of Invited Scientist through the ‘Brain Pool Program’.

Funding

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MEST) (Grant No. 2017R1A2A1A05001484) and the Council of Scientific and Industrial Research (CSIR), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Chandrasekara Pillai or Il-Shik Moon.

Electronic supplementary material

ESM 1

(DOC 828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, K.C., Kumar, A.S. & Moon, IS. Combined effect of inherent residual chloride and bound water content and surface morphology on the intrinsic electron-transfer activity of ruthenium oxide. J Solid State Electrochem 22, 2183–2196 (2018). https://doi.org/10.1007/s10008-018-3917-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3917-z

Keywords

Navigation