Journal of Solid State Electrochemistry

, Volume 22, Issue 7, pp 2049–2058 | Cite as

Titanium hydride—a stable support for Pt catalysts in oxygen reduction reaction

  • Olga Krichevski
  • Hanan Teller
  • Palaniappan Subramanian
  • Srikanth Kolagatla
  • Alex Schechter
Original Paper


A new class of conductive and dimensionally stable surface-modified TiH2 particles prepared by ultra-sonication method is proposed as a non-carbon support for Pt catalysts. Thermal analysis results indicated good thermal stability of these materials at high temperatures in oxygen atmosphere. TiH2 particles are discovered to be stable at potentials higher than 1.5 V in O2-saturated H2SO4 solution. It is also found that the surface-modified TiH2 exhibits a modest electrocatalytic activity toward oxygen reduction reaction. Accelerated durability measurements show that Pt catalysts supported on sonicated TiH2 exhibited superior stability than standard Vulcan XC-72 carbon. High corrosion resistance and thermal stability render better chemical stability and structural integrity to surface-modified TiH2 particles at elevated temperatures.


TiH2 Non-carbon support Oxygen reduction reaction Durability Fuel cell 



The funding of the Israel PM Office-Fuel Choices Initiative and Israel Science Foundation (ISF) through the Israel National Research Center for Electrochemical Propulsion (INREP) and I-CORE Program (number 2797/11) is gratefully acknowledged.

Supplementary material

10008_2018_3916_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1192 kb)


  1. 1.
    Zhou J, Zhou X, Sun X, Li R, Murphy M, Ding Z, Sun X, Sham T-K (2007) Interaction between Pt nanoparticles and carbon nanotubes – an X-ray absorption near edge structures (XANES) study. Chem Phys Lett 437(4–6):229–232CrossRefGoogle Scholar
  2. 2.
    Shao Y, Yin G, Gao Y (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171(2):558–566CrossRefGoogle Scholar
  3. 3.
    Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19(1):46–59CrossRefGoogle Scholar
  4. 4.
    Liu S-S, Li Z-B, Jiao C-L, Si X-L, Yang L-N, Zhang J, Zhou H-Y, Huang F-L, Gabelica Z, Schick C, Sun L-X, Xu F (2013) Improved reversible hydrogen storage of LiAlH4 by nano-sized TiH2. Int J Hydrog Energy 38(6):2770–2777CrossRefGoogle Scholar
  5. 5.
    Lee S, Jeon C, Park Y (2004) Fabrication of TiO2 tubules by template synthesis and hydrolysis with water vapor. Chem Mater 16(22):4292–4295CrossRefGoogle Scholar
  6. 6.
    Antolini E (2003) Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J Mater Sci 38(14):2995–3005CrossRefGoogle Scholar
  7. 7.
    Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88(1–2):1–24Google Scholar
  8. 8.
    Chen Z, Waje M, Li W, Yan Y (2007) Supportless Pt and PtPd nanotubes as Electrocatalysts for oxygen-reduction reactions. Angew Chem Int Ed 46(22):4060–4063CrossRefGoogle Scholar
  9. 9.
    Xia BY, Ng WT, Wu HB, Wang X, Lou XW (2012) Self-supported interconnected Pt Nanoassemblies as highly stable Electrocatalysts for low-temperature fuel cells. Angew Chem Int Ed 51(29):7213–7216CrossRefGoogle Scholar
  10. 10.
    Ji X, Lee KT, Holden R, Zhang L, Zhang J, Botton GA, Couillard M, Nazar LF (2010) Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat Chem 2(4):286–293CrossRefGoogle Scholar
  11. 11.
    Meher SK, Rao GR (2012) Polymer-assisted hydrothermal synthesis of highly reducible shuttle-shaped CeO2: microstructural effect on promoting Pt/C for methanol Electrooxidation. ACS Catal 2(12):2795–2809CrossRefGoogle Scholar
  12. 12.
    Meier JC, Galeano C, Katsounaros I, Topalov AA, Kostka A, Schüth F, Mayrhofer KJJ (2012) Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal 2(5):832–843CrossRefGoogle Scholar
  13. 13.
    Wang A-L, Xu H, Feng J-X, Ding L-X, Tong Y-X, Li G-R (2013) Design of Pd/PANI/Pd sandwich-structured nanotube Array catalysts with special shape effects and synergistic effects for ethanol Electrooxidation. J Am Chem Soc 135(29):10703–10709CrossRefGoogle Scholar
  14. 14.
    Parrondo J, Han T, Niangar E, Wang C, Dale N, Adjemian K, Ramani V (2014) Platinum supported on titanium-ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles. Proc Natl Acad Sci 111(1):45–50CrossRefGoogle Scholar
  15. 15.
    Doi S, Ishihara A, Mitsushima S, Kamiya N, Ota K-I (2007) Zirconium-based compounds for cathode of polymer electrolyte fuel cell. J Electrochem Soc 154(3):B362–B369CrossRefGoogle Scholar
  16. 16.
    Venkataraj S, Severin D, Mohamed SH, Ngaruiya J, Kappertz O, Wuttig M (2006) Towards understanding the superior properties of transition metal oxynitrides prepared by reactive DC magnetron sputtering. Thin Solid Films 502(1–2):228–234CrossRefGoogle Scholar
  17. 17.
    Kiran V, Srinivasu K, Sampath S (2013) Morphology dependent oxygen reduction activity of titanium carbide: bulk vs. nanowires. Phys Chem Chem Phys 15(22):8744–8751CrossRefGoogle Scholar
  18. 18.
    Ohnishi R, Katayama M, Cha D, Takanabe K, Kubota J, Domen K (2013) Titanium nitride nanoparticle Electrocatalysts for oxygen reduction reaction in alkaline solution. J Electrochem Soc 160(6):F501–F506CrossRefGoogle Scholar
  19. 19.
    Jin Z, Li P, Xiao D (2014) Enhanced Electrocatalytic performance for oxygen reduction via active interfaces of layer-by-layered titanium nitride/titanium Carbonitride structures. Sci Rep 4:6712CrossRefGoogle Scholar
  20. 20.
    Bauer A, Lee K, Song C, Xie Y, Zhang J, Hui R (2010) Pt nanoparticles deposited on TiO2 based nanofibers: electrochemical stability and oxygen reduction activity. J Power Sources 195(10):3105–3110CrossRefGoogle Scholar
  21. 21.
    Datye AK, Kalakkad DS, Yao MH, Smith DJ (1995) Comparison of metal-support interactions in Pt/TiO2 and Pt/CeO2. J Catal 155(1):148–153CrossRefGoogle Scholar
  22. 22.
    Jiang D-E, Overbury SH, Dai S (2012) Structures and energetics of Pt clusters on TiO2: interplay between metal–metal bonds and metal-oxygen bonds. J Phys Chem C 116(41):21880–21885CrossRefGoogle Scholar
  23. 23.
    Koudelka M, Monnier A, Sanchez J, Augustynski J (1984) Correlation between the surface composition of Pt/TiO2 catalysts and their adsorption behaviour in aqueous solutions. J Mol Catal 25(1):295–305CrossRefGoogle Scholar
  24. 24.
    Estudillo-Wong LA, Luo Y, Díaz-Real JA, Alonso-Vante N (2016) Enhanced oxygen reduction reaction stability on platinum nanoparticles photo-deposited onto oxide-carbon composites. Appl Catal B Environ 187:291–300CrossRefGoogle Scholar
  25. 25.
    Bobet JL, Even C, Nakamura Y, Akiba E, Darriet B (2000) Synthesis of magnesium and titanium hydride via reactive mechanical alloying: influence of 3d-metal addition on MgH2 synthesize. J Alloys Compd 298(1–2):279–284CrossRefGoogle Scholar
  26. 26.
    Riese A, Banham D, Ye S, Sun X (2015) Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports. J Electrochem Soc 162(7):F783–F788CrossRefGoogle Scholar
  27. 27.
    Du S, Kendall K, Toloueinia P, Mehrabadi Y, Gupta G, Newton J (2012) Aggregation and adhesion of gold nanoparticles in phosphate buffered saline. J Nanopart Res 14(3):758CrossRefGoogle Scholar
  28. 28.
    Kalita PE, Cornelius AL, Lipinska-Kalita KE, Gobin CL, Peter Liermann H (2008) In situ observations of temperature- and pressure-induced phase transitions in TiH2: angle-dispersive and synchrotron energy-dispersive X-ray diffraction studies. J Phys Chem Solids 69(9):2240–2244CrossRefGoogle Scholar
  29. 29.
    Kerber SJ, Bruckner JJ, Wozniak K, Seal S, Hardcastle S, Barr TL (1996) The nature of hydrogen in x-ray photoelectron spectroscopy: general patterns from hydroxides to hydrogen bonding. J Vac Sci Technol A 14(3):1314–1320CrossRefGoogle Scholar
  30. 30.
    Huang NK, Wang DZ, Lu Z, Lin LB (1994) X-ray photoelectron spectroscopy characterization of TiO2 films deposited by dynamic ion beam mixing. Surf Coat Technol 70(1):69–71CrossRefGoogle Scholar
  31. 31.
    Wu Q-M, Ruan J-M, Zhou Z-C, Sang S-B (2015) Magneli phase titanium sub-oxide conductive ceramic TinO2n−1 as support for electrocatalyst toward oxygen reduction reaction with high activity and stability. J Cent South Univ 22(4):1212–1219CrossRefGoogle Scholar
  32. 32.
    Bartholomew RF, Frankl DR (1969) Electrical properties of some titanium oxides. Phys Rev 187(3):828–833CrossRefGoogle Scholar
  33. 33.
    Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22(10):1039–1059CrossRefGoogle Scholar
  34. 34.
    Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Cataly 46(3):285–305CrossRefGoogle Scholar
  35. 35.
    Ioroi T, Siroma Z, Fujiwara N, Yamazaki S-i, Yasuda K (2005) Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem Commun 7(2):183–188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical SciencesAriel UniversityArielIsrael

Personalised recommendations