Skip to main content

Charge transport in carbon electrodes made by electrospray of precursor sol and subsequent carbonization in situ


As an alternative to binder-based overlay of carbon powder on the current collector, the precursor sol may be carbonized directly on the current collector for the purpose of making supercapacitor electrodes. The disintegration of precursor sol into fine droplets prior to the deposition and subsequent removal of solvent from the deposited gel through lyophilization may enhance the internal surface area and the pore connectivity. This article presents the impedance spectroscopy analysis of such electrodes and reports the resistance to transport of electrolyte ions in such pore network through meaningful equivalent circuits. Neutral, alkaline, and acidic electrolytes were considered in this study. Multiple levels of hierarchy in the pore network are considered here to ascertain the extent of heterogeneity and branching in the pore structure. The electrodes from the binder-based overlay of carbon powder are studied here for comparison. The method of spray coating, followed by in situ carbonization seems to have produced a pore structure, which is less branched. The resistance to access the internal surface is more uniform over the entire domain for such electrodes. The equivalent series resistance was found significantly smaller for these electrodes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Sarangapani S, Tilak BV, Chen CP (1996) Materials for electrochemical capacitors: theoretical and experimental constraints. J Electrochem Soc 143:3791–3799

    Article  CAS  Google Scholar 

  2. 2.

    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nature Mat 7(11):845–854.

    Article  CAS  Google Scholar 

  3. 3.

    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New York.

    Book  Google Scholar 

  6. 6.

    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15-16):2483–2498.

    Article  Google Scholar 

  7. 7.

    Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50.

    Article  CAS  Google Scholar 

  8. 8.

    Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74(1):99–107.

    Article  CAS  Google Scholar 

  9. 9.

    Qu D (2001) The ac impedance studies for porous MnO2 cathode by means of modified transmission line model. J Power Sources 102(1-2):270–276.

    Article  CAS  Google Scholar 

  10. 10.

    Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950.

    Article  CAS  Google Scholar 

  11. 11.

    Frackowiak E, Meteneir K, BertagnaV BF (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77:2421–2423

    Article  CAS  Google Scholar 

  12. 12.

    Shi H (1996) Activated carbons and double layer capacitance. Electrochim Acta 41(10):1633–1639.

    Article  CAS  Google Scholar 

  13. 13.

    Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116

    Article  CAS  Google Scholar 

  14. 14.

    Lin C, Ritter JA, Popov BN (1999) Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon xerogels. J Electrochem Soc 146:3639–3643

    Article  CAS  Google Scholar 

  15. 15.

    Song HK, Hwang HY, Lee KH, Dao LH (2000) The effect of pore size distribution on the frequency dispersion of porous electrodes. Electrochim Acta 45(14):2241–2257.

    Article  CAS  Google Scholar 

  16. 16.

    Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300

    Article  CAS  Google Scholar 

  17. 17.

    Meyer ST, Pekala RW, Kaschmitter JL (1993) The Aerocapacitor: an electrochemical double-layer energy-storage device. J Electochem Soc 140:446–451

    Article  Google Scholar 

  18. 18.

    Niu CM, Sichel EK, Hoch R, Moy D, Tennet H (1997) High power electrochemical capacitors based on carbon nanotubes electrodes. Appl Phys Lett 70:1480–1482

    Article  CAS  Google Scholar 

  19. 19.

    Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions. J Electrochem Soc 147:2486–2493

    Article  CAS  Google Scholar 

  20. 20.

    Bruno M M, Cotella N G, Miras M C, Barbero C A (2005) Porous carbon–carbon composite replicated from a natural fibre. Chem Commun 0:5896–5898, 47, DOI:

  21. 21.

    Chimola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore size less than 1 nanometer. Science 313(5794):1760–1763.

    Article  CAS  Google Scholar 

  22. 22.

    Tamon H, Ishizaka H, Yamamoto T, Suzuki T (2000) Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors. Carbon38:1099–1105

  23. 23.

    Wu D, Fu R, Zhang S, Dresselhaus MS (2004) Dresselhaus G (2004) preparation of low-density aerogels by ambient pressure drying. Carbon 42(10):2033–2039.

    Article  CAS  Google Scholar 

  24. 24.

    Li J, Wang X, Wang Y, Huang Q, Dai C, Gamboa S, Sebastian PJ (2008) Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. J Non-Cryst Solids 354:19–24

    Article  CAS  Google Scholar 

  25. 25.

    Pröbstle H, Wiener M, Fricke J (2003) Carbon aerogels for electrochemical double layer capacitors. J Porous Mater 10:213–222

    Article  Google Scholar 

  26. 26.

    Kim J, Hwang SW, Hyun SH (2005) Preparation of carbon aerogel electrodes for supercapacitors and their electrochemical characteristics. J Mater Sci 40:725–731

    Article  CAS  Google Scholar 

  27. 27.

    Candy JP, Fouilloux P, Keddam M, Takenouti H (1981) The characterization of porous electrodes by impedance measurements. ElectrochimActa 26(8):1029–1034.

    Article  CAS  Google Scholar 

  28. 28.

    Keiser H, Beccu KD, Gutjahr MA (1976) Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen. Electrochim Acta 21:539–543

    Article  CAS  Google Scholar 

  29. 29.

    Srinivasan V, Weidner J (1999) Mathematical modeling of electrochemical capacitors. J Electochem Soc 146(5):1650–1658.

    Article  CAS  Google Scholar 

  30. 30.

    Lufrano F, Staiti P, Minutoli M (2003) Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy. J Power Sources 124:314–320

    Article  CAS  Google Scholar 

  31. 31.

    Levie RD (1964) On porous electrodes in electrolyte solution-IV. Electrochim Acta 9(9):1231–1245.

    Article  Google Scholar 

  32. 32.

    Ganguly S, Chavhan MP (2016) An improved carbon electrode for electric double layer capacitor devices and a method of fabricating said improved carbon electrode Indian Patent:201631000006

Download references

Author information



Corresponding author

Correspondence to Somenath Ganguly.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chavhan, M.P., Pankaj & Ganguly, S. Charge transport in carbon electrodes made by electrospray of precursor sol and subsequent carbonization in situ. J Solid State Electrochem 22, 2149–2157 (2018).

Download citation


  • Subsequent Carbonization
  • Carbon Powder
  • Electrolyte Ions
  • Internal Surface Area
  • Equivalent Series Resistance (ESR)