Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Charge transport in carbon electrodes made by electrospray of precursor sol and subsequent carbonization in situ

  • 139 Accesses

  • 1 Citations

Abstract

As an alternative to binder-based overlay of carbon powder on the current collector, the precursor sol may be carbonized directly on the current collector for the purpose of making supercapacitor electrodes. The disintegration of precursor sol into fine droplets prior to the deposition and subsequent removal of solvent from the deposited gel through lyophilization may enhance the internal surface area and the pore connectivity. This article presents the impedance spectroscopy analysis of such electrodes and reports the resistance to transport of electrolyte ions in such pore network through meaningful equivalent circuits. Neutral, alkaline, and acidic electrolytes were considered in this study. Multiple levels of hierarchy in the pore network are considered here to ascertain the extent of heterogeneity and branching in the pore structure. The electrodes from the binder-based overlay of carbon powder are studied here for comparison. The method of spray coating, followed by in situ carbonization seems to have produced a pore structure, which is less branched. The resistance to access the internal surface is more uniform over the entire domain for such electrodes. The equivalent series resistance was found significantly smaller for these electrodes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Sarangapani S, Tilak BV, Chen CP (1996) Materials for electrochemical capacitors: theoretical and experimental constraints. J Electrochem Soc 143:3791–3799

  2. 2.

    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nature Mat 7(11):845–854. https://doi.org/10.1038/nmat2297

  3. 3.

    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652. https://doi.org/10.1126/science.1158736

  4. 4.

    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

  5. 5.

    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New York. https://doi.org/10.1007/978-1-4757-3058-6

  6. 6.

    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15-16):2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6

  7. 7.

    Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50. https://doi.org/10.1016/S0378-7753(00)00485-7

  8. 8.

    Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74(1):99–107. https://doi.org/10.1016/S0378-7753(98)00038-X

  9. 9.

    Qu D (2001) The ac impedance studies for porous MnO2 cathode by means of modified transmission line model. J Power Sources 102(1-2):270–276. https://doi.org/10.1016/S0378-7753(01)00810-2

  10. 10.

    Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950. https://doi.org/10.1016/S0008-6223(00)00183-4

  11. 11.

    Frackowiak E, Meteneir K, BertagnaV BF (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77:2421–2423

  12. 12.

    Shi H (1996) Activated carbons and double layer capacitance. Electrochim Acta 41(10):1633–1639. https://doi.org/10.1016/0013-4686(95)00416-5

  13. 13.

    Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116

  14. 14.

    Lin C, Ritter JA, Popov BN (1999) Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon xerogels. J Electrochem Soc 146:3639–3643

  15. 15.

    Song HK, Hwang HY, Lee KH, Dao LH (2000) The effect of pore size distribution on the frequency dispersion of porous electrodes. Electrochim Acta 45(14):2241–2257. https://doi.org/10.1016/S0013-4686(99)00436-3

  16. 16.

    Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300

  17. 17.

    Meyer ST, Pekala RW, Kaschmitter JL (1993) The Aerocapacitor: an electrochemical double-layer energy-storage device. J Electochem Soc 140:446–451

  18. 18.

    Niu CM, Sichel EK, Hoch R, Moy D, Tennet H (1997) High power electrochemical capacitors based on carbon nanotubes electrodes. Appl Phys Lett 70:1480–1482

  19. 19.

    Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions. J Electrochem Soc 147:2486–2493

  20. 20.

    Bruno M M, Cotella N G, Miras M C, Barbero C A (2005) Porous carbon–carbon composite replicated from a natural fibre. Chem Commun 0:5896–5898, 47, DOI: https://doi.org/10.1039/b511771b

  21. 21.

    Chimola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore size less than 1 nanometer. Science 313(5794):1760–1763. https://doi.org/10.1126/science.1132195

  22. 22.

    Tamon H, Ishizaka H, Yamamoto T, Suzuki T (2000) Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors. Carbon38:1099–1105

  23. 23.

    Wu D, Fu R, Zhang S, Dresselhaus MS (2004) Dresselhaus G (2004) preparation of low-density aerogels by ambient pressure drying. Carbon 42(10):2033–2039. https://doi.org/10.1016/j.carbon.2004.04.003

  24. 24.

    Li J, Wang X, Wang Y, Huang Q, Dai C, Gamboa S, Sebastian PJ (2008) Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. J Non-Cryst Solids 354:19–24

  25. 25.

    Pröbstle H, Wiener M, Fricke J (2003) Carbon aerogels for electrochemical double layer capacitors. J Porous Mater 10:213–222

  26. 26.

    Kim J, Hwang SW, Hyun SH (2005) Preparation of carbon aerogel electrodes for supercapacitors and their electrochemical characteristics. J Mater Sci 40:725–731

  27. 27.

    Candy JP, Fouilloux P, Keddam M, Takenouti H (1981) The characterization of porous electrodes by impedance measurements. ElectrochimActa 26(8):1029–1034. https://doi.org/10.1016/0013-4686(81)85072-4

  28. 28.

    Keiser H, Beccu KD, Gutjahr MA (1976) Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen. Electrochim Acta 21:539–543

  29. 29.

    Srinivasan V, Weidner J (1999) Mathematical modeling of electrochemical capacitors. J Electochem Soc 146(5):1650–1658. https://doi.org/10.1149/1.1391821

  30. 30.

    Lufrano F, Staiti P, Minutoli M (2003) Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy. J Power Sources 124:314–320

  31. 31.

    Levie RD (1964) On porous electrodes in electrolyte solution-IV. Electrochim Acta 9(9):1231–1245. https://doi.org/10.1016/0013-4686(64)85015-5

  32. 32.

    Ganguly S, Chavhan MP (2016) An improved carbon electrode for electric double layer capacitor devices and a method of fabricating said improved carbon electrode Indian Patent:201631000006

Download references

Author information

Correspondence to Somenath Ganguly.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chavhan, M.P., Pankaj & Ganguly, S. Charge transport in carbon electrodes made by electrospray of precursor sol and subsequent carbonization in situ. J Solid State Electrochem 22, 2149–2157 (2018). https://doi.org/10.1007/s10008-018-3903-5

Download citation