Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 7, pp 2003–2012 | Cite as

Carbon nanotube thin films modified with a mixture of Prussian blue and ruthenium purple: combining materials and properties

  • Ariane Schmidt
  • Samantha Husmann
  • Aldo J. G. Zarbin
Original Paper

Abstract

Thin films of iron-filled carbon nanotubes prepared through the liquid/liquid interfacial method were modified with a mixture of hexacyanometallates (HCMs) Prussian blue and ruthenium purple. Two different approaches were used in order to obtain both materials in the composites, based on a direct reaction starting from a mixture of both precursors or a step-by-step deposition of each compound. The modified films were characterized by cyclic voltammetry, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and UV-Vis spectroscopy, confirming the formation of a mixture of HCMs in both methods of synthesis. Stability studies were evaluated in different supporting electrolytes, and composites presented good performances due to carbon nanotube stabilization. Electrochromic properties were also evaluated for selected composites, showing high electrochromic efficiency and stability.

Graphical abstract

Keywords

Prussian blue Ruthenium purple Carbon nanotubes Thin films Composites 

Notes

Acknowledgements

We would like to acknowledge the financial support from Brazilian agencies CNPq, CAPES, National Institute of Science and Technology of Carbon Nanomaterials (INCT-Nanocarbono) and Centro de Microscopia Eletrônica-Universidade Federal do Paraná (CME-UFPR) for Raman analysis. A.S. thanks CNPq for the scholarship. S.H. thanks CAPES for the scholarship.

Supplementary material

10008_2018_3899_MOESM1_ESM.docx (2.7 mb)
ESM 1 (DOCX 2715 kb)

References

  1. 1.
    Scholz F, Pickett C J (2006) In: electrochemistry of Polycyano-Metalates. Encyclopedia of electrochemistry, Wiley-VCH, Weinheim, 7:(703-718)Google Scholar
  2. 2.
    Ludi A, Gudel H U (1973) In: structural chemistry of polynuclear transition metals cyanides. Structure and bonding. Berlin, 14:(1-21)Google Scholar
  3. 3.
    Krap CP, Balmaseda J, Zamora B, Reguera E (2010) Hydrogen storage in the iron series of porous Prussian blue analogues. Int J Hydrog Energy 35(19):10381–10386.  https://doi.org/10.1016/j.ijhydene.2010.07.109 CrossRefGoogle Scholar
  4. 4.
    Xiong P, Zeng G, Zeng L, Wei M (2015) Prussian blue analogues Mn[Fe(CN)6]0.6667.nH2O cubes as an anode material for lithium-ion batteries. Dalton Trans 44(38):16746–16751.  https://doi.org/10.1039/C5DT03030G CrossRefGoogle Scholar
  5. 5.
    Karyakin AA (2001) Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13(10):813–819.  https://doi.org/10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z CrossRefGoogle Scholar
  6. 6.
    Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 21(3):389–407.  https://doi.org/10.1016/j.bios.2004.12.001 CrossRefGoogle Scholar
  7. 7.
    Nossol E, Zarbin AJG (2013) Electrochromic properties of carbon nanotubes/Prussian blue nanocomposite films. Sol Energy Mater Sol Cells 109:40–46.  https://doi.org/10.1016/j.solmat.2012.10.006 CrossRefGoogle Scholar
  8. 8.
    Kulesza PJ, Malik MA, Zamponi S, Berrettoni M, Marassi R (1995) Electrolyte-cation-dependent coloring, electrochromism and thermochromism of cobalt(II) hexacyanoferrate(III, II) films. J Electroanal Chem 397(1):287–292.  https://doi.org/10.1016/0022-0728(95)04187-8 CrossRefGoogle Scholar
  9. 9.
    Widmann A, Kahlert H, Petrovic-Prelevic I, Wulff H, Yakhmi JV, Bagkar N, Scholz F (2002) Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron Hexacyanoferrates/Hexacyanocobaltates. Inorg Chem 41(22):5706–5715CrossRefGoogle Scholar
  10. 10.
    Robin MB (1962) The color and electronic configurations of Prussian blue. Inorg Chem 1(2):337–342.  https://doi.org/10.1021/ic50002a028 CrossRefGoogle Scholar
  11. 11.
    Itaya K, Ataka T, Toshima S (1982) Electrochemical preparation of a Prussian blue analog: iron-ruthenium cyanide. J Am Chem Soc 104(13):3751–3752CrossRefGoogle Scholar
  12. 12.
    Mortimer RJ, Varley TS (2011) Synthesis, characterisation and in situ colorimetry of electrochromic ruthenium purple thin films. Dyes Pigments 89(2):169–176.  https://doi.org/10.1016/j.dyepig.2010.10.009 CrossRefGoogle Scholar
  13. 13.
    Kotzian P, Janků T, Kalcher K, Vytřas K (2007) Catalytic activity of iron hexacyanoosmate(II) towards hydrogen peroxide and nicotinamide adenine dinucleotide and its use in amperometric biosensors. Anal Chim Acta 599(2):287–293.  https://doi.org/10.1016/j.aca.2007.07.053 CrossRefGoogle Scholar
  14. 14.
    Bedewy M, Meshot ER, Polsen E, Tawfick S, Hart AJ (2009) Collective mechanisms limiting the indefinite growth of carbon nanotube assemblies. J Phys Chem C 113(48):20576–20582.  https://doi.org/10.1021/jp904152v CrossRefGoogle Scholar
  15. 15.
    Kumar AVN, Joseph J (2015) New Zn–NiHCF hybrid electrochemically formed on glassy carbon: observation of thin layer diffusion during electro-oxidation of hydrazine. J Phys Chem C 119(1):296–304.  https://doi.org/10.1021/jp508740w CrossRefGoogle Scholar
  16. 16.
    Safavi A, Kazemi SH, Kazemi H (2011) Electrochemically deposited hybrid nickel–cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors. Electrochim Acta 56(25):9191–9196Google Scholar
  17. 17.
    Reddy SJ, Dostal A, Scholz F (1996) Solid state electrochemical studies of mixed nickel-iron hexacyanoferrates with the help of abrasive stripping voltammetry. J Electroanal Chem 403(1):209–212CrossRefGoogle Scholar
  18. 18.
    Cui X, Hong L, Lin X (2002) Electrochemical preparation, characterization and application of electrodes modified with hybrid hexacyanoferrates of copper and cobalt. J Electroanal Chem 526(1–2):115–124CrossRefGoogle Scholar
  19. 19.
    Yu H, Jian X, Jin J, Wang F, Wang Y, Qi G-c (2013) Preparation of hybrid cobalt–iron hexacyanoferrate nanoparticles modified multi-walled carbon nanotubes composite electrode and its application. J Electroanal Chem 700:47–53.  https://doi.org/10.1016/j.jelechem.2013.03.015 CrossRefGoogle Scholar
  20. 20.
    Salazar P, Martín M, O’Neill RD, Roche R, González-Mora JL (2012) Improvement and characterization of surfactant-modified Prussian blue screen-printed carbon electrodes for selective H 2 O 2 detection at low applied potentials. J Electroanal Chem 674:48–56.  https://doi.org/10.1016/j.jelechem.2012.04.005 CrossRefGoogle Scholar
  21. 21.
    Wang Z, Yang H, Gao B, Tong Y, Zhang X, Su L (2014) Stability improvement of Prussian blue in nonacidic solutions via an electrochemical post-treatment method and the shape evolution of Prussian blue from nanospheres to nanocubes. Analyst 139(5):1127–1133.  https://doi.org/10.1039/c3an02071a CrossRefGoogle Scholar
  22. 22.
    Crumbliss AL, Lugg PS, Morosoff N (1984) Alkali metal cation effects in a Prussian blue surface modified electrode. Inorg Chem 23(26):4701–4708.  https://doi.org/10.1021/ic00194a057 CrossRefGoogle Scholar
  23. 23.
    Li Z, Chen J, Li W, Chen K, Nie L, Yao S (2007) Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes. J Electroanal Chem 603(1):59–66.  https://doi.org/10.1016/j.jelechem.2007.01.021 CrossRefGoogle Scholar
  24. 24.
    Li J, Qiu JD, Xu JJ, Chen HY, Xia XH (2007) The synergistic effect of Prussian-blue-grafted carbon nanotube/poly(4-vinylpyridine) composites for Amperometric sensing. Adv Funct Mater 17(9):1574–1580.  https://doi.org/10.1002/adfm.200600033 CrossRefGoogle Scholar
  25. 25.
    Nossol E, Zarbin AJG (2009) A simple and innovative route to prepare a novel carbon nanotube/Prussian blue electrode and its utilization as a highly sensitive H2O2 Amperometric sensor. Adv Funct Mater 19(24):3980–3986.  https://doi.org/10.1002/adfm.200901478 CrossRefGoogle Scholar
  26. 26.
    Husmann S, Zarbin AJG (2015) Multifunctional carbon nanotubes/ruthenium purple thin films: preparation, characterization and study of application as sensors and electrochromic materials. Dalton Trans 44(13):5985–5995.  https://doi.org/10.1039/C4DT02784A CrossRefGoogle Scholar
  27. 27.
    Husmann S, Zarbin AJG (2016) Design of a Prussian Blue Analogue/carbon nanotube thin-film nanocomposite: tailored precursor preparation, synthesis, characterization, and application. Chem Eur J 22(19):6643–6653.  https://doi.org/10.1002/chem.201504444 CrossRefGoogle Scholar
  28. 28.
    Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9(5):1872–1876.  https://doi.org/10.1021/nl8038579 CrossRefGoogle Scholar
  29. 29.
    de Souza VHR, Oliveira MM, Zarbin AJG (2014) Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid–liquid interfaces. J Power Sources 260:34–42.  https://doi.org/10.1016/j.jpowsour.2014.02.070 CrossRefGoogle Scholar
  30. 30.
    Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110(10):5790–5844.  https://doi.org/10.1021/cr9002962 CrossRefGoogle Scholar
  31. 31.
    Salvatierra RV, Oliveira MM, Zarbin AJG (2010) One-pot synthesis and processing of transparent, conducting, and freestanding carbon nanotubes/polyaniline composite films. Chem Mater 22(18):5222–5234.  https://doi.org/10.1021/cm1012153 CrossRefGoogle Scholar
  32. 32.
    Souza VHR, Husmann S, Neiva EGC, Lisboa FS, Lopes LC, Salvatierra RV, Zarbin AJG Flexible, Transparent and Thin Films of Carbon Nanomaterials as Electrodes for Electrochemical Applications. Electrochim Acta 197(Supplement C):200–209Google Scholar
  33. 33.
    Salvatierra RV, Cava CE, Roman LS, Zarbin AJG (2013) ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films. Adv Funct Mater 23(12):1490–1499.  https://doi.org/10.1002/adfm.201201878 CrossRefGoogle Scholar
  34. 34.
    Domingues SH, Salvatierra RV, Oliveira MM, Zarbin AJG (2011) Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chem Commun 47(9):2592–2594.  https://doi.org/10.1039/C0CC04304D CrossRefGoogle Scholar
  35. 35.
    Mehl H, Oliveira MM, Zarbin AJG (2015) Thin and transparent films of graphene/silver nanoparticles obtained at liquid–liquid interfaces: preparation, characterization and application as SERS substrates. J Colloid Interface Sci 438:29–38.  https://doi.org/10.1016/j.jcis.2014.09.068 CrossRefGoogle Scholar
  36. 36.
    Neiva EGC, Oliveira MM, Bergamini MF, Marcolino LH Jr, Zarbin AJG (2016) One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors. Sci Rep 6(1):33806.  https://doi.org/10.1038/srep33806 CrossRefGoogle Scholar
  37. 37.
    Fonsaca J, Hostert L, Orth ES, Zarbin AJG (2017) Tailoring multifunctional graphene-based thin films: from nanocatalysts to SERS substrate. J Mater Chem A 5(20):9591–9603.  https://doi.org/10.1039/C7TA01967J CrossRefGoogle Scholar
  38. 38.
    Schnitzler MC, Oliveira MM, Ugarte D, Zarbin AJG (2003) One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem Phys Lett 381(5–6):541–548.  https://doi.org/10.1016/j.cplett.2003.10.037 CrossRefGoogle Scholar
  39. 39.
    Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19(6):162–168CrossRefGoogle Scholar
  40. 40.
    Asher SA (1993) UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Part 1. Anal Chem 65(2):59A–66AGoogle Scholar
  41. 41.
    Abbaspour A, Kamyabi MA (2005) Electrochemical formation of Prussian blue films with a single ferricyanide solution on gold electrode. J Electroanal Chem 584(2):117–123.  https://doi.org/10.1016/j.jelechem.2005.07.008 CrossRefGoogle Scholar
  42. 42.
    Asher SA (1993) UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Anal Chem 65(4):201A–210AGoogle Scholar
  43. 43.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758CrossRefGoogle Scholar
  44. 44.
    Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409(2):47–99.  https://doi.org/10.1016/j.physrep.2004.10.006 CrossRefGoogle Scholar
  45. 45.
    Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Condens Matter Phys 1(1):89–108CrossRefGoogle Scholar
  46. 46.
    Wilhelm H, Lelaurain M, McRae E, Humbert B (1998) Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character. J Appl Phys 84(12):6552–6558.  https://doi.org/10.1063/1.369027 CrossRefGoogle Scholar
  47. 47.
    Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2008) Chapter 4 Raman spectroscopy of carbon nanotubes. In: Saito S, Zettl a (eds) contemporary concepts of condensed matter science, vol volume 3. Elsevier, pp 83–108Google Scholar
  48. 48.
    Weidinger D, Brown DJ, Owrutsky JC (2011) Transient absorption studies of vibrational relaxation and photophysics of Prussian blue and ruthenium purple nanoparticles. J Chem Phys 134(12):124510.  https://doi.org/10.1063/1.3564918 CrossRefGoogle Scholar
  49. 49.
    Griffith WP, Turner GT (1970) Raman spectra and vibrational assignments of hexacyano-complexes. J Chem Soc A Inorg Phys Theor (0):858–862, DOI:  https://doi.org/10.1039/j19700000858
  50. 50.
    Zhao J, Zhang Y, Shi C, Chen H, Tong L, Zhu T, Liu Z (2006) Electrochemical deposition of Prussian blue on hydrogen terminated silicon(111). Thin Solid Films 515(4):1847–1850.  https://doi.org/10.1016/j.tsf.2006.07.011 CrossRefGoogle Scholar
  51. 51.
    Kumar AS, Zen J-M (2006) Characteristic and electrocatalytic behavior of ruthenium Prussian blue analogue film in strongly acidic media. J Mol Catal A Chem 252(1–2):63–69.  https://doi.org/10.1016/j.molcata.2006.02.038 CrossRefGoogle Scholar
  52. 52.
    Chen S-M, Hsueh S-H (2004) Preparation, characterization and electrocatalytic properties of polynuclear mixed-valent ruthenium oxide/hexacyanoruthenate film modified electrodes. J Electroanal Chem 566(2):291–303.  https://doi.org/10.1016/j.jelechem.2003.11.040 CrossRefGoogle Scholar
  53. 53.
    Abe T, Toda G, Tajiri A, Kaneko M (2001) Electrochemistry of ferric ruthenocyanide (ruthenium purple), and its electrocatalysis for proton reduction. J Electroanal Chem 510(1–2):35–42.  https://doi.org/10.1016/S0022-0728(01)00539-3 CrossRefGoogle Scholar
  54. 54.
    Botulinski A, Buchler JW, Lee YJ, Scheidt WR, Wicholas M (1988) Metal complexes with tetrapyrrole ligands. 49. Solid-state and solution structures of iron(III) porphodimethenes. Effects of steric hindrance. Inorg Chem 27(5):927–933.  https://doi.org/10.1021/ic00278a035 CrossRefGoogle Scholar
  55. 55.
    Husmann S, Nossol E, Zarbin AJG (2014) Carbon nanotube/Prussian blue paste electrodes: characterization and study of key parameters for application as sensors for determination of low concentration of hydrogen peroxide. Sens Actuators B Chem 192(0):782–790CrossRefGoogle Scholar
  56. 56.
    Nossol E, Zarbin AJG (2012) Transparent films from carbon nanotubes/Prussian blue nanocomposites: preparation, characterization, and application as electrochemical sensors. J Mater Chem 22(5):1824–1833.  https://doi.org/10.1039/C1JM14225A CrossRefGoogle Scholar
  57. 57.
    Itaya K, Uchida I (1986) Nature of intervalence charge-transfer bands in Prussian blues. Inorg Chem 25(3):389–392.  https://doi.org/10.1021/ic00223a034 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry DepartamentUniversidade Federal do Paraná (UFPR)CuritibaBrazil

Personalised recommendations