Skip to main content
Log in

Morphology-dependent activities of TiO2-NTs@Sb-SnO2 electrodes for efficient electrocatalytic methyl orange decolorization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Novel two-stage pulse electrodeposition was used to fabricate TiO2-NTs@Sb-SnO2 electrodes. At the first pulse stage, a compact Sb-SnO2-coating TiO2-NTs interlayer was realized; at the second, various morphologies of apparent layers including flower-like, hierarchical, and dendritic morphologies were realized through regulating pulse parameters. Morphology-dependent electrode activities were investigated. Electrochemical experiment results show that dendritic-morphology electrode has the lowest charge transfer impedance (27.5 Ω vs. 43.2, 38.1, and 37.5 Ω) in comparison with other electrodes, and chronopotentiometry tests show a higher accelerated service lifetime of dendritic electrode (23 h vs. 17.8, 17.4, and 13.9 h), indicating the optimal electrochemical activity. The electrocatalytic methyl orange decolorization processes show that dendritic electrode possesses a higher first-order kinetics rate constant than other two electrodes (51.7 × 10−3 min−1 vs. 32.5 × 10−3, 39.7 × 10−3, and 35.5 × 10−3 min−1). These results demonstrate that the dendritic electrode possesses the most efficient catalytic performance.

Various morphologies on electrodes were realized, and experimental results reveal the morphology-dependent activities of electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y (2016) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598. https://doi.org/10.1016/j.cej.2015.09.001

    Article  CAS  Google Scholar 

  2. Antonopoulou M, Evgenidou E, Lambropoulou D, Konstantinou I (2014) A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media. Water Res 53:215–234. https://doi.org/10.1016/j.watres.2014.01.028

    Article  CAS  Google Scholar 

  3. Martínez-Huitle CA, Rodrigo MA, Sires I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115(24):13362–13407. https://doi.org/10.1021/acs.chemrev.5b00361

    Article  Google Scholar 

  4. Ganzenko O, Huguenot D, Hullebusch ED, Esposito G, Oturan MA (2014) Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ Sci Pollut R 21(14):8493–8524. https://doi.org/10.1007/s11356-014-2770-6

    Article  CAS  Google Scholar 

  5. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367. https://doi.org/10.1007/s11356-014-2783-1

    Article  Google Scholar 

  6. Trasatti S (2000) Electrocatalysis: understanding the success of DSA. Electrochim Acta 45(15-16):2377–2385. https://doi.org/10.1016/S0013-4686(00)00338-8

    Article  CAS  Google Scholar 

  7. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41. https://doi.org/10.1016/j.seppur.2003.10.006

    Article  Google Scholar 

  8. Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340. https://doi.org/10.1039/B517632H

    Article  Google Scholar 

  9. Chaplin BP (2014) Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ Sci Proc Impacts 16(6):1182–1203. https://doi.org/10.1039/C3EM00679D

    Article  CAS  Google Scholar 

  10. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B-Environ 166-167:603–643. https://doi.org/10.1016/j.apcatb.2014.11.016

    Article  CAS  Google Scholar 

  11. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569. https://doi.org/10.1021/cr9001319

    Article  CAS  Google Scholar 

  12. Bagastyo AY, Batstone DJ, Rabaey K, Radjenovic J (2013) Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes. Water Res 47(1):242–250. https://doi.org/10.1016/j.watres.2012.10.001

    Article  CAS  Google Scholar 

  13. Lin H, Niu J, Ding S, Zhang L (2012) Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2–Sb/MnO2 anodes. Water Res 46(7):2281–2289. https://doi.org/10.1016/j.watres.2012.01.053

    Article  CAS  Google Scholar 

  14. Lin H, Niu J, Xu J, Huang H, Li D, Yue Z, Feng C (2013) Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9-C10) by Ti/SnO2-Sb-Ce, Ti/SnO2-Sb/Ce-PbO2, and Ti/BDD electrodes. Environ Sci Technol 47(22):13039–13046. https://doi.org/10.1021/es4034414

    Article  CAS  Google Scholar 

  15. Valero D, García-García V, Expósito E, Aldaz A, Montiel V (2014) Electrochemical treatment of wastewater from almond industry using DSA-type anodes: direct connection to a PV generator. Sep Purif Technol 123:15–22

    Article  CAS  Google Scholar 

  16. Rao ANS, Venkatarangaiah VT (2014) Metal oxide-coated anodes in wastewater treatment. Environ Sci Pollut R 21:3197–3217

    Article  Google Scholar 

  17. Wu W, Huang Z-H, Lim T-T (2014) Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. App Catal A-Gen 480:58–78. https://doi.org/10.1016/j.apcata.2014.04.035

    Article  CAS  Google Scholar 

  18. Yang SY, Kim D, Park H (2014) Shift of the reactive species in the Sb-SnO2-electrocatalyzed inactivation of E. coli and degradation of phenol: effects of nickel doping and electrolytes. Environ Sci Technol 48:2877–2884

    Article  CAS  Google Scholar 

  19. Yang SY, Choi W, Park H (2015) TiO2 nanotube array photoelectrocatalyst and Ni-Sb-SnO2 electrocatalyst bifacial electrodes: a new type of bifunctional hybrid platform for water treatment. ACS Appl Mater Inter 7(3):1907–1914. https://doi.org/10.1021/am5076748

    Article  CAS  Google Scholar 

  20. Liu L, Liu H, Zhao Y-P, Wang Y, Duan Y, Gao G, Ge M, Chen W (2008) Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ Sci Technol 42(7):2342–2348. https://doi.org/10.1021/es070980o

    Article  CAS  Google Scholar 

  21. Li Y, Shen W (2014) Morphology-dependent nanocatalysts: rod-shaped oxides. Chem Soc Rev 43(5):1543–1574. https://doi.org/10.1039/C3CS60296F

    Article  Google Scholar 

  22. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Edit 48(1):60–103. https://doi.org/10.1002/anie.200802248

    Article  CAS  Google Scholar 

  23. Montilla F, Morallón E, Vázqueza JL (2005) Evaluation of the electrocatalytic activity of antimony-doped tin dioxide anodes toward the oxidation of phenol in aqueous solutions. J Electrochem Soc 152:B421–B427

    Article  CAS  Google Scholar 

  24. Adams B, Tian M, Chen A (2009) Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochim Acta 54:1491–1498

    Article  CAS  Google Scholar 

  25. Christensen PA, Zakaria K, Christensen H, Yonard T (2013) The effect of Ni and Sb oxide precursors, and of Ni composition, synthesis conditions and operating parameters on the activity, selectivity and durability of Sb-doped SnO2 anodes modified with Ni. J Electrochem Soc 160(8):H405–H413. https://doi.org/10.1149/2.023308jes

    Article  CAS  Google Scholar 

  26. Sun Z, Zhang H, Wei X, Du R, Hu X (2015) Fabrication and electrochemical properties of a SnO2-Sb anode doped with Ni-Nd for phenol oxidation. J Electrochem Soc 162(9):H590–H596. https://doi.org/10.1149/2.0221509jes

    Article  CAS  Google Scholar 

  27. Fan CM, Hu B, Wang Y, Liang ZH, Hao XG, Liu SB, Sun YP (2009) Preparation of Ti/SnO2-Sb2O4 photoanode by electrodeposition and dip coating for PEC oxidations. Desalination 249(2):736–741. https://doi.org/10.1016/j.desal.2009.01.035

    Article  CAS  Google Scholar 

  28. Chen Y, Li H, Liu W, Tu Y, Zhang Y, Han W, Wang L (2014) Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. Chemosphere 113:48–55. https://doi.org/10.1016/j.chemosphere.2014.03.122

    Article  CAS  Google Scholar 

  29. Hu F, Dong Z, Cui X, Chen W (2011) Improved SnO2-Sb2O4 based anode modified with Cr3C2 and CNT for phenol oxidation. Electrochim Acta 56(3):1576–1580. https://doi.org/10.1016/j.electacta.2010.10.037

    Article  CAS  Google Scholar 

  30. Chen Z, Li S, Zhang W (2013) Pulse electrodeposition of ZnO/SnO2 composite films: growth mechanism, structural and optical studies. J Alloy Compd 557:274–278

    Article  CAS  Google Scholar 

  31. Lai M, Lim J-H, Mubeen S, Rheem Y, Mulchandani A, Deshusses MA, Myung NV (2009) Size-controlled electrochemical synthesis and properties of SnO2 nanotubes. Nanotechnology 20(18):185602–185607. https://doi.org/10.1088/0957-4484/20/18/185602

    Article  Google Scholar 

  32. Moura DCD, Cerro-López M, Quiroz MA, Silva DRD, Martínez-Huitle CA (2015) Large disk electrodes of Ti/TiO2-nanotubes/PbO2 for environmental applications. RSC Adv 5(40):31454–31459. https://doi.org/10.1039/C4RA16723F

    Article  Google Scholar 

  33. Cerro-Lopez M, Meas-Vong Y, Méndez-Rojas MA, Martínez-Huitle CA, Quiroz MA (2014) Formation and growth of PbO2 inside TiO2 nanotubes for environmental applications. Appl Catal B-Environ 144:174–181

    Article  CAS  Google Scholar 

  34. Moura DCD, Quiroz MA, Silva DRD, Salazar R, Martínez-Huitle CA (2016) Electrochemical degradation of acid blue 113 dye using TiO2-nanotubes decorated with PbO2 as anode. Environmental Nanotechnology, Monitoring & Management 5:13–20. https://doi.org/10.1016/j.enmm.2015.11.001

    Article  Google Scholar 

  35. Chen A, Nigro S (2003) Influence of a nanoscale gold thin layer on Ti/SnO2-Sb2O5 electrodes. J Phys Chem B 107(48):13341–13348. https://doi.org/10.1021/jp036138w

    Article  CAS  Google Scholar 

  36. Fernandes A, Santos D, Pacheco MJ, Ciríaco L, Lopes A (2014) Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD. Appl Catal B Environ 148-149:288–294. https://doi.org/10.1016/j.apcatb.2013.10.060

    Article  CAS  Google Scholar 

  37. Cui X, Zhao G, Lei Y, Li H, Li P, Liu M (2009) Novel vertically aligned TiO2 nanotubes embedded with Sb-doped SnO2 electrode with high oxygen evolution potential and long service time. Mater Chem Phys 113(1):314–321. https://doi.org/10.1016/j.matchemphys.2008.07.087

    Article  CAS  Google Scholar 

  38. Zhao G, Cui X, Liu M, Li P, Zhang Y, Cao T, Li H, Lei Y, Liu L, Li D (2009) Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ Sci Technol 43(5):1480–1486. https://doi.org/10.1021/es802155p

    Article  CAS  Google Scholar 

  39. Wu T, Zhao G, Lei Y, Li P (2011) Distinctive tin dioxide anode fabricated by pulse electrodeposition: high oxygen evolution potential and efficient electrochemical degradation of fluorobenzene. J Phys Chem C 115(10):3888–3898. https://doi.org/10.1021/jp110149v

    Article  CAS  Google Scholar 

  40. Wang Q, Jin T, Hu Z, Zhou L, Zhou M (2013) TiO2-NTs/SnO2-Sb anode for efficient electrocatalytic degradation of organic pollutants: effect of TiO2-NTs architecture. Sep Purif Technol 102:180–186. https://doi.org/10.1016/j.seppur.2012.10.006

    Article  CAS  Google Scholar 

  41. Guo Y, Duan T, Chen Y, Wen Q (2015) Solvothermal fabrication of three-dimensionally sphere-stacking Sb-SnO2 electrode based on TiO2 nanotube arrays. Ceram Int 41(7):8723–8729. https://doi.org/10.1016/j.ceramint.2015.03.092

    Article  CAS  Google Scholar 

  42. Jara CC, Salazar-Banda GR, Arratia RS, Campino JS, Aguilera MI (2011) Improving the stability of Sb doped Sn oxides electrode thermally synthesized by using an acid ionic liquid as solvent. Chem Eng J 171:1253–1262

    Article  Google Scholar 

  43. Santos TÉS, Silva RS, Meneses CT, Martínez-Huitle CA, Eguiluz KIB, Salazar-Banda GR (2016) Unexpected enhancement of electrocatalytic nature of Ti/(RuO2)x-(Sb2O5)y anodes prepared by the ionic liquid-thermal decomposition method. Ind Eng Chem Res 55(11):3182–3187. https://doi.org/10.1021/acs.iecr.5b04690

    Article  CAS  Google Scholar 

  44. Duan T, Chen Y, Wen Q, Duan Y, Qi L (2016) Component-controlled synthesis of gradient electrode for efficient electrocatalytic dye decolorization. J Electrochem Soc 163:H499–H507

    Article  CAS  Google Scholar 

  45. Duan T, Chen Y, Wen Q, Duan Y (2015) Different mechanisms and electrocatalytic activities of Ce ion or CeO2 modified Ti/Sb-SnO2 electrodes fabricated by one-step pulse electro-codeposition. RSC Adv 5(25):19601–19612. https://doi.org/10.1039/C5RA01876E

    Article  CAS  Google Scholar 

  46. Ourya A, Kirchev A, Bultel Y (2012) Oxygen evolution on alpha-lead dioxide electrodes in methanesulfonic acid. Electrochim Acta 63:28–33

    Article  Google Scholar 

  47. Yao Y, Zhao C, Zhao M, Wang X (2013) Electrocatalytic degradation of methylene blue on PbO2-ZrO2 nanocomposite electrodes prepared by pulse electrodeposition. J Hazard Mater 263:726–734. https://doi.org/10.1016/j.jhazmat.2013.10.038

    Article  CAS  Google Scholar 

  48. Hamza M, Abdelhedi R, Brillas E, Sirés I (2009) Comparative electrochemical degradation of the triphenylmethane dye methyl violet with boron-doped diamond and Pt anodes. J Electroanal Chem 627(1-2):41–50. https://doi.org/10.1016/j.jelechem.2008.12.017

    Article  CAS  Google Scholar 

  49. Zhou M, Särkkä H, Sillanpää M (2011) A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes. Sep Purif Technol 78:290–297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by High-technology Ship Research Project of the Ministry of Industry and Information Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tigang Duan or Ye Chen.

Electronic supplementary material

ESM 1

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, T., Ma, L., Chen, Y. et al. Morphology-dependent activities of TiO2-NTs@Sb-SnO2 electrodes for efficient electrocatalytic methyl orange decolorization. J Solid State Electrochem 22, 1871–1879 (2018). https://doi.org/10.1007/s10008-018-3895-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3895-1

Keywords

Navigation