Skip to main content

Advertisement

Log in

Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical noise of a polymer membrane hydrogen-air fuel cell operating at different load currents was measured in serial experiments. Spectral power densities of the noise are shown to be divided into three regions. At frequencies greater than 3–10 Hz, the spectrum dependence has a constant slope of − 2 in the bilogarithmic coordinates. At frequencies 0.3–5 Hz, there is a horizontal plateau in which length is determined by the value of a load. At frequencies less than 0.3 Hz, the dependence of spectral power density has a slope of − 2. Medium-frequency plateau and high-frequency slope of spectral power densities of the noise were approximated by model RC circuits. The values of Faradic resistance and double-layer capacitance connected in parallel were obtained from the electrochemical impedance data. At load voltages higher 0.5 V, the height of the plateau was shown to be proportional to the 2.68 power of the load current value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu L, Li Y, Wang F (2008) Pitting mechanism on an austenite stainless steel nanocrystalline coating investigated by electrochemical noise and in-situ AFM analysis. Electrochim Acta 54(2):768–780. https://doi.org/10.1016/j.electacta.2008.06.076

    Article  CAS  Google Scholar 

  2. Bertocci U, Huet F, Nogueira RP, Rousseau P (2002) Drift removal procedures in the analysis of electrochemical noise. Corrosion 58(4):337–347. https://doi.org/10.5006/1.3287684

    Article  CAS  Google Scholar 

  3. Oltra R, Gabrielli C, Huet F, Keddam M (1986) Electrochemical investigation of locally depassivated iron. A comparison of various techniques. Electrochim Acta 31(12):1505–1511. https://doi.org/10.1016/0013-4686(86)87068-2

    Article  Google Scholar 

  4. Ritter S, Huet F, Cottis RA (2012) Guideline for an assessment of electrochemical noise measurement devices. Mat Corros 63(4):297–302. https://doi.org/10.1002/maco.201005839

    Article  CAS  Google Scholar 

  5. Singh PS, Lemay SG (2016) Stochastic processes in electrochemistry. Anal Chem 88(10):5017–5027. https://doi.org/10.1021/acs.analchem.6b00683

    Article  CAS  Google Scholar 

  6. Bertocci U, Huet F (1995) Noise analysis applied to electrochemical systems. Corrosion 51(2):131–144. https://doi.org/10.5006/1.3293585

    Article  CAS  Google Scholar 

  7. Astafev EA, Ukshe AE, Manzhos RA, Dobrovolsky YA, Lakeev SG, Timashev SF (2017) Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation. Int J Electrochem Sci 12:1742–1754

    Article  CAS  Google Scholar 

  8. Martemianov S, Adiutantov V, Evdokimov YK, Madier L, Maillard F, Thomas A (2015) New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries. J Solid State Electrochem 19(9):2803–2810. https://doi.org/10.1007/s10008-015-2855-2

    Article  CAS  Google Scholar 

  9. Knott KF (1965) Measurement of battery noise and resistor-current noise at subaudio frequencies. Electron Lett 1(5):132. https://doi.org/10.1049/el:19650123

    Article  Google Scholar 

  10. Rubio MA, Bethune K, Urquia A, St-Pierre J (2016) Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise. Int J Hydrog Energy 41(33):14991–15001. https://doi.org/10.1016/j.ijhydene.2016.05.292

    Article  CAS  Google Scholar 

  11. Koshekov KT, Klikushin YN, Kobenko VY, Evdokimov YK, Demyanenko AV (2014) Fuel cell diagnostics using identification measurement theory. J Fuel Cell Sci Technol 11:051003-1–051003-9

    Article  Google Scholar 

  12. Legros B, Thivel PX, Bultel Y, Nogueira RP (2011) First results on PEMFC diagnosis by electrochemical noise. Electrochem Commun 13(12):1514–1516. https://doi.org/10.1016/j.elecom.2011.10.007

    Article  CAS  Google Scholar 

  13. Maizia R, Dib A, Thomas A, Martemianov S (2017) Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise. J Power Sources 342:553–561. https://doi.org/10.1016/j.jpowsour.2016.12.053

    Article  CAS  Google Scholar 

  14. Evdokimov YK, Denisov ES, Martemianov SA (2009) Electrical noise of hydrogen fuel cell and diagnostic characteristic research. Nonlinear World 7:706–713

    Google Scholar 

  15. Denisov ES, Evdokimov YK, Martemianov S, Thomas A, Adiutantov N (2017) Electrochemical noise as a diagnostic tool for PEMFC. Fuel Cells 17(2):225–237. https://doi.org/10.1002/fuce.201600077

    Article  CAS  Google Scholar 

  16. Cruz-Manzo S, Chen R, Rama P (2013) Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy. Int J Hydrog Energy 38(3):1702–1713. https://doi.org/10.1016/j.ijhydene.2012.08.141

    Article  CAS  Google Scholar 

  17. Bao C, Bessler WG (2015) Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part II. Physics-based electrochemical impedance analysis. J Power Sources 278:675–682. https://doi.org/10.1016/j.jpowsour.2014.12.045

    Article  CAS  Google Scholar 

  18. Niroumand AM, Mérida W, Eikerling M, Saif M (2010) Pressure–voltage oscillations as a diagnostic tool for PEFC cathodes. Electrochem Commun 12(1):122–124. https://doi.org/10.1016/j.elecom.2009.11.003

    Article  CAS  Google Scholar 

  19. Baert DHJ, Vervaet AAK (2003) Small bandwidth measurement of the noise voltage of batteries. J Power Sources 114(2):357–365. https://doi.org/10.1016/S0378-7753(02)00599-2

    Article  CAS  Google Scholar 

  20. Martinet S, Durand R, Ozil P, Leblanc P, Blanchard P (1999) Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection. J Power Sources 83(1-2):93–99. https://doi.org/10.1016/S0378-7753(99)00272-4

    Article  CAS  Google Scholar 

  21. Roberge P, Beaudoin R (1989) Voltage noise measurements on sealed lead-acid batteries. J Power Sources 27(2):177–186. https://doi.org/10.1016/0378-7753(89)80131-4

    Article  CAS  Google Scholar 

  22. Martemianov S, Maillard F, Thomas A, Lagonotte P, Madier L (2016) Noise diagnosis of commercial Li-ion batteries using high-order moments. Russ J Electrochem 52(12):1122–1130. https://doi.org/10.1134/S1023193516120089

    Article  CAS  Google Scholar 

  23. Tyagai VA, Luk’yanchikova NB (1967) Equilibrium fluctuations in electrochemical processes. Elektrokhimiya 3:316–322

    CAS  Google Scholar 

  24. Tyagai VA (1971) Faradaic noise of complex electrochemical reactions. Electrochim Acta 16(10):1647–1654. https://doi.org/10.1016/0013-4686(71)85075-2

    Article  CAS  Google Scholar 

  25. Tyagai VA (1974) Noise in electrochemical systems. Elektrokhimiya 10:3–24

    CAS  Google Scholar 

  26. Grafov BM (1966) On the equilibrium fluctuations in a stationary state. Elektrokhimiya 2:1249–1253

    CAS  Google Scholar 

  27. Grafov BM (2011) Gibbs fluctuation theory in the context of electrochemical equilibrium noise. Pure Appl Chem 83:253–257

    Article  CAS  Google Scholar 

  28. Grafov BM (2015) Fractal theory of electrochemical diffusion noise. Russ J Electrochem 51(1):1–6. https://doi.org/10.1134/S1023193515010073

    Article  CAS  Google Scholar 

  29. Grafov BM, Dobrovol’skii YA, Davydov AD, Ukshe AE, Klyuev AL, Astaf’ev EA (2015) Electrochemical noise diagnostics: analysis of algorithm of orthogonal expansions. Russ J Electrochem 51(6):503–507. https://doi.org/10.1134/S1023193515060063

    Article  CAS  Google Scholar 

  30. Klyuev AL, Davydov AD, Grafov BM, Dobrovolskii YA, Ukshe AE, Astaf’ev EA (2016) Electrochemical noise spectroscopy: method of secondary Chebyshev spectrum. Russ J Electrochem 52(10):1001–1005. https://doi.org/10.1134/S1023193516100062

    Article  CAS  Google Scholar 

  31. Grafov BM, Dobrovolskii YA, Klyuev AL, Ukshe AE, Davydov AD, Astaf’ev EA (2017) Median Chebyshev spectroscopy of electrochemical noise. J Solid State Electrochem 21(3):915–918. https://doi.org/10.1007/s10008-016-3395-0

    Article  CAS  Google Scholar 

  32. Astaf’ev EA, Ukshe AE, Dobrovolskii YA (2017) Hardware for measurement of electrochemical noise of chemical power sources. Instrum Exp Tech 60:130–131. https://doi.org/10.7868/S0032816217050032

    Article  Google Scholar 

  33. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32(1):110–113. https://doi.org/10.1103/PhysRev.32.110

    Article  CAS  Google Scholar 

  34. Kramers HA (1927) La diffusion de la lumiere par les atoms. Аtti Congr Inten Fis Como 2:545–557

    Google Scholar 

  35. Yuan X, Wang H, Sun JC, Zhang J (2007) AC impedance technique in PEM fuel cell diagnosis—a review. Int J Hydrog Energy 32(17):4365–4380. https://doi.org/10.1016/j.ijhydene.2007.05.036

    Article  CAS  Google Scholar 

  36. Astaf'ev EA, Lyskov NV, Gerasimova EV (2009) Research of polymer electrolyte fuel cell cathodes by electrochemical techniques. Int Sci J Altern Energy Ecol 8:93–101

    Google Scholar 

  37. Antonacci P, Chevalier S, Lee J, Ge N, Hinebaugh J, Yip R, Tabuchi Y, Kotaka T, Bazylak A (2016) Balancing mass transport resistance and membrane resistance when tailoring microporous layer thickness for polymer electrolyte membrane fuel cells operating at high current densities. Electrochim Acta 188:888–897. https://doi.org/10.1016/j.electacta.2015.11.115

    Article  CAS  Google Scholar 

  38. Astaf’ev EA (2018) Multi-purpose high resolution device for measurement of electrochemical noise. Instrum Exp Tech 61. https://doi.org/10.7868/S0032816218010123

  39. Astaf’ev EA, Manzhos RA (2018) Wide dynamic range hardware for electrochemical noise measurement. Instrum Exp Tech 61:149–150. https://doi.org/10.7868/S0032816217060192

    Google Scholar 

  40. Homborg AM, Tinga T, van Westing EPM, Zhang X, Ferrari GM, de Wit JHW, Mol JMC (2014) A critical appraisal of the interpretation of electrochemical noise for corrosion studies. Corrosion 70(10):971–987. https://doi.org/10.5006/1277

    Article  Google Scholar 

  41. Schottky W (1918) Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. Ann Phys 57:541–567

    Article  Google Scholar 

  42. Timashev SF, Polyakov YS (2007) Review of flicker noise spectroscopy in electrochemistry. Fluct Noise Lett 7(02):R15–R17. https://doi.org/10.1142/S0219477507003829

    Article  Google Scholar 

  43. Beletskiy AF (1967) An introduction to the principles of linear circuits. Svyaz, Moscow

    Google Scholar 

  44. Barsoukov E, Macdonald JR (eds) (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn. Hoboken, Wiley. https://doi.org/10.1002/0471716243

    Google Scholar 

  45. Bertocci U, Huet F, Jaoul B, Rousseau P (2000) Frequency analysis of transients in electrochemical noise: mathematical relationships and computer simulations. Corrosion 56(7):675–683. https://doi.org/10.5006/1.3280570

    Article  CAS  Google Scholar 

  46. Cheng YF, Luo JL, Wilmott M (2000) Spectral analysis of electrochemical noise with different transient shapes. Electrochim Acta 45(11):1763–1771. https://doi.org/10.1016/S0013-4686(99)00406-5

    Article  CAS  Google Scholar 

  47. Burgess RE (1956) The statistics of charge carrier fluctuations in semiconductors. Proc Phys Soc B 69(10):1020–1027. https://doi.org/10.1088/0370-1301/69/10/308

    Article  Google Scholar 

  48. Gabrielli C, Huet F, Nogueira RP (2005) Fluctuations of concentration overpotential generated at gas-evolving electrodes. Electrochim Acta 50(18):3726–3736. https://doi.org/10.1016/j.electacta.2005.01.019

    Article  CAS  Google Scholar 

  49. Shinozaki K, Zack JW, Pylypenko S, Pivovar BS, Kocha SS (2015) Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique. II. Influence of ink formulation, catalyst layer uniformity and thickness. J Electrochem Soc 162(12):F1384–F1396. https://doi.org/10.1149/2.0551512jes

    Article  CAS  Google Scholar 

  50. Astafiev EA, Dobrovol'sky YA, Gerasimova EV, Arsatov AV (2008) Special methodological aspects of studying fuel cell electrodes in a liquid half-cell with a gas diffusion layer. Int Sci J Altern Energy Ecol 2:86–93

    Google Scholar 

  51. Astafiev EA, Dobrovolsky YA (2007) The behavior of membrane-electrode units of polymeric fuel cells: electrochemical methods to study catalytic activity and corrosion resistance of electrodes. Int Sci J Altern Energy Ecol 12:72–77

    Google Scholar 

  52. Chevalier S, Josset C, Bazylak A, Auvity B (2016) Measurements of air velocities in polymer electrolyte membrane fuel cell channels using electrochemical impedance spectroscopy. J Electrochemi Soc 163(8):F816–F823. https://doi.org/10.1149/2.0481608jes

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Astafev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafev, E.A., Ukshe, A.E., Gerasimova, E.V. et al. Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads. J Solid State Electrochem 22, 1839–1849 (2018). https://doi.org/10.1007/s10008-018-3892-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3892-4

Keywords

Navigation