Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1591–1605 | Cite as

Thermal and electrochemical characterization of a new poly (ethylene oxide) copolymer—gel electrolyte containing polyvalent ion pair of cobalt (CoII/III) or iron (FeII/III)

  • Garbas Anacleto dos Santos Junior
  • Ana Flávia Nogueira
Original Paper
  • 176 Downloads

Abstract

In this work, gel polymer electrolytes based on the PEO copolymer—poly(ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether)), (P(EO-EM))—with a fixed P(EO-EM):GBL (γ-butyrolactone) weight ratio of 30–70% and different concentrations of redox mediators CoII:CoIII or FeII:FeIII were prepared as a possible substitute to the redox couple I/I3 in dye-sensitized solar cell. The gel polymer electrolytes showed an increase in thermal stability with the addition of iron or cobalt salts. Maximum conductivity of 10−6 and 10−5 S cm−1, at room temperature, was observed for the system containing Co and Fe, respectively. Conductivity variation as a function of temperature showed Arrhenius type thermal activated process. Photoinduced absorption spectroscopy (PAS) tests showed the successful regeneration of the L0 dye by Gel+2 wt% FeII/III and Gel+5 wt% CoII/III. The Gel+2 wt% FeII/III electrolyte was also able to reduce the N719, D35, and Z907 dyes.

Keywords

Ionic conductivity Polymer electrolyte Redox mediator Free I/I3 DSSC 

Notes

Acknowledgments

The authors GASJ and AFN thank to FAPESP, CNPq, and INEO for financial support. We wish to express our thanks to Dra. Silmara Neves and Dra. Carla Maria Nascimento Polo da Fonseca for the EIS measurements and for their kind interest and encouragement. We are also very grateful to Dr. Anders Hagfeldt and Dr. Gerrit Boschlo for the PAS tests and valuable remarks which helped to improve the manuscript.

Supplementary material

10008_2018_3889_MOESM1_ESM.docx (417 kb)
ESM 1 (DOCX 416 kb)

References

  1. 1.
    Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197.  https://doi.org/10.1016/S0378-7753(98)00193-1 CrossRefGoogle Scholar
  2. 2.
    Xu Y, Lin Y, Huang X, Liu Y, Huang Y, Duan X (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7(5):4042–4049.  https://doi.org/10.1021/nn4000836 CrossRefGoogle Scholar
  3. 3.
    Chodankar NR, Dubal DP, Lokhande AC, Lokhande CD (2015) Ionically conducting PVA–LiClO 4 gel electrolyte for high performance flexible solid state supercapacitors. J Colloid Interface Sci 460:370–376.  https://doi.org/10.1016/j.jcis.2015.08.046 CrossRefGoogle Scholar
  4. 4.
    Manuel Stephan A (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42.  https://doi.org/10.1016/j.eurpolymj.2005.09.017 CrossRefGoogle Scholar
  5. 5.
    Tafur JP, Fernández Romero AJ (2014) Electrical and spectroscopic characterization of PVdF-HFP and TFSI—ionic liquids-based gel polymer electrolyte membranes. Influence of ZnTf2 salt. J Membr Sci 469:499–506.  https://doi.org/10.1016/j.memsci.2014.07.007 CrossRefGoogle Scholar
  6. 6.
    Kumar GG, Sampath S (2003) Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ionics 160(3–4):289–300.  https://doi.org/10.1016/S0167-2738(03)00209-1 CrossRefGoogle Scholar
  7. 7.
    Zhu YS, Xiao SY, Li MX, Chang Z, Wang FX, Gao J, Wu YP (2015) Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J Power Sources 288:368–375.  https://doi.org/10.1016/j.jpowsour.2015.04.117 CrossRefGoogle Scholar
  8. 8.
    Gupta H, Shalu BL, Singh VK, Singh SK, Tripathi AK, Verma YL, Singh RK (2017) Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO 4 electrodes. Solid State Ionics 309:192–199.  https://doi.org/10.1016/j.ssi.2017.07.019 CrossRefGoogle Scholar
  9. 9.
    Salian GD, Lebouin C, Demoulin A, Lepihin MS, Maria S, Galeyeva AK, Kurbatov AP, Djenizian T (2017) Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries. J of Power Sources 340:242–246.  https://doi.org/10.1016/j.jpowsour.2016.11.078 CrossRefGoogle Scholar
  10. 10.
    Virya A, Lian K (2017) Li 2 SO 4-polyacrylamide polymer electrolytes for 2.0 V solid symmetric supercapacitors. Electrochem Commun 81:52–55.  https://doi.org/10.1016/j.elecom.2017.06.003 CrossRefGoogle Scholar
  11. 11.
    Shi J, Yang Y, Shao H (2018) Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J Membr Sci 547:1–10.  https://doi.org/10.1016/j.memsci.2017.10.033 CrossRefGoogle Scholar
  12. 12.
    Kumar D (2017) Effect of organic solvent addition on electrochemical properties of ionic liquid based Na + conducting gel electrolytes. Solid State Ionics.  https://doi.org/10.1016/j.ssi.2017.09.006
  13. 13.
    Vélez JF, Álvarez LV, del Río C, Herradón B, Mann E, Morales E (2017) Imidazolium-based mono and dicationic ionic liquid sodium polymer gel electrolytes. Electrochim Acta 241:517–525.  https://doi.org/10.1016/j.electacta.2017.04.096 CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Xu K, Rong X, Hu Y-S, Li H, Huang X, Chen L (2017) Na 3.4 Zr 1.8 Mg 0.2 Si 2 PO 12 filled poly(ethylene oxide)/Na(CF 3 SO 2 ) 2 N as flexible composite polymer electrolyte for solid-state sodium batteries. J Power Sources 372:270–275.  https://doi.org/10.1016/j.jpowsour.2017.10.083 CrossRefGoogle Scholar
  15. 15.
    Koduru HK, Marino L, Scarpelli F, Petrov AG, Marinov YG, Hadjichristov GB, Iliev MT, Scaramuzza N (2017) Structural and dielectric properties of NaIO 4—complexed PEO/PVP blended solid polymer electrolytes. Curr Appl Phys 17(11):1518–1531.  https://doi.org/10.1016/j.cap.2017.07.012 CrossRefGoogle Scholar
  16. 16.
    Wang J, Song S, Gao S, Muchakayala R, Liu R, Ma Q (2017) Mg-ion conducting gel polymer electrolyte membranes containing biodegradable chitosan: preparation, structural, electrical and electrochemical properties. Polym Test 62:278–286.  https://doi.org/10.1016/j.polymertesting.2017.07.016 CrossRefGoogle Scholar
  17. 17.
    Asmara SN, Kufian MZ, Majid SR, Arof AK (2011) Preparation and characterization of magnesium ion gel polymer electrolytes for application in electrical double layer capacitors. Electrochim Acta 57:91–97.  https://doi.org/10.1016/j.electacta.2011.06.045 CrossRefGoogle Scholar
  18. 18.
    Osman Z, Zainol NH, Samin SM, Chong WG, Md Isa KB, Othman L, Supa’at I, Sonsudin F (2014) Electrochemical impedance spectroscopy studies of magnesium-based polymethylmethacrylate gel polymer electroytes. Electrochim Acta 131:148–153.  https://doi.org/10.1016/j.electacta.2013.11.189 CrossRefGoogle Scholar
  19. 19.
    Pandey GP, Agrawal RC, Hashmi SA (2009) Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide. J Power Sources 190(2):563–572.  https://doi.org/10.1016/j.jpowsour.2009.01.057 CrossRefGoogle Scholar
  20. 20.
    Yoshimoto N, Shirai T, Morita M (2005) A novel polymeric gel electrolyte systems containing magnesium salt with ionic liquid. Electrochim Acta 50(19):3866–3871.  https://doi.org/10.1016/j.electacta.2005.02.036 CrossRefGoogle Scholar
  21. 21.
    Morita M, Shirai T, Yoshimoto N, Ishikawa M (2005) Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt. J Power Sources 139(1–2):351–355.  https://doi.org/10.1016/j.jpowsour.2004.07.028 CrossRefGoogle Scholar
  22. 22.
    Jaipal Reddy M, Chu PP (2002) Effect of Mg2+ on PEO morphology and conductivity. Solid State Ionics 149(1-2):115–123.  https://doi.org/10.1016/S0167-2738(02)00141-8 CrossRefGoogle Scholar
  23. 23.
    Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Mangalam R, Premalatha M, Monisha S (2017) Mg-ion conducting blend polymer electrolyte based on poly(vinyl alcohol)-poly (acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100.  https://doi.org/10.1016/j.ssi.2017.06.002 CrossRefGoogle Scholar
  24. 24.
    Guisao JPT, Romero AJF (2015) Interaction between Zn2+ cations and n-methyl-2-pyrrolidone in ionic liquid-based Gel Polymer Electrolytes for Zn batteries. Electrochim Acta 176:1447–1453.  https://doi.org/10.1016/j.electacta.2015.07.132 CrossRefGoogle Scholar
  25. 25.
    Yang H, Huq R, Farrington GC (1990) Solid State Ionics 40:663–665CrossRefGoogle Scholar
  26. 26.
    Plancha MJC, Rangel CM, Sequeira CAC (1999) Pseudo-equilibrium phase diagrams for PEO-Zn salts-based electrolytes. Solid State Ionics 116(3–4):293–300.  https://doi.org/10.1016/S0167-2738(98)00356-7 CrossRefGoogle Scholar
  27. 27.
    Huq R, Farrington GC (1988) Solid State Ionics 28:990–993CrossRefGoogle Scholar
  28. 28.
    Karan S, Sahu M, Sahu TB, Mahipal YK, Sahu DK, Agrawal RC (2017) Investigations on materials and ion transport properties of Zn 2+ conducting nano-composite polymer electrolytes (NCPEs): [(90 PEO: 10 Zn(CF 3 SO 3 ) 2 )+ x ZnO]. Mater Today-Commun 13:269–274.  https://doi.org/10.1016/j.mtcomm.2017.10.009 CrossRefGoogle Scholar
  29. 29.
    Chowdari BVR, Huq R, Farrington GC (1992) Thermal and electrical characterization of PEO-based polymer electrolytes containing mixed Co(II) and Li(I)☆. Solid State Ionics 57(1-2):49–58.  https://doi.org/10.1016/0167-2738(92)90063-U CrossRefGoogle Scholar
  30. 30.
    Atchia S, Gorecki W, Armand M, Deroo D (1992) Ionic conduction in PEO-perfluorosulphonimide divalent salt complexes. Electrochim Acta 37(9):1743–1745.  https://doi.org/10.1016/0013-4686(92)80151-B CrossRefGoogle Scholar
  31. 31.
    Hoang TKA, Acton M, Chen HTH, Huang Y, Doan TNL, Chen P (2017) Sustainable gel electrolyte containing Pb 2+ as corrosion inhibitor and dendrite suppressor for the zinc anode in the rechargeable hybrid aqueous battery. Mater Today-Energy 4:34–40.  https://doi.org/10.1016/j.mtener.2017.03.003 CrossRefGoogle Scholar
  32. 32.
    Mitra S, Kulkarni AR (2002) Solid State Ionics 154–155:37–43CrossRefGoogle Scholar
  33. 33.
    Radhakrishnan S, Badiger MV, Graham NB (1995) Polypyrrole in poly(ethylene oxide) gels with copper(ii) chloride: a hybrid conducting polymer. Polymer 36(4):707–712.  https://doi.org/10.1016/0032-3861(95)93098-7 CrossRefGoogle Scholar
  34. 34.
    Dissanayake MAKL, Jayathilaka PARD, Bokalawela RSP (2005) Ionic conductivity of PEO9: Cu(CF3SO3)2: Al2O3 nano-composite solid polymer electrolyte. Electrochim Acta 50(28):5602–5605.  https://doi.org/10.1016/j.electacta.2005.03.038 CrossRefGoogle Scholar
  35. 35.
    Bartolotta A, Di Marco G, Lanza M, Carini G (1994) J Non-Cryst Solids 172:1328–1333CrossRefGoogle Scholar
  36. 36.
    Singh MK, Suleman M, Kumar Y, Hashmi SA (2015) A novel configuration of electrical double layer capacitor with plastic crystal based gel polymer electrolyte and graphene nano-platelets as electrodes: a high rate performance. Energy 80:465–473.  https://doi.org/10.1016/j.energy.2014.11.087 CrossRefGoogle Scholar
  37. 37.
    Shi M-J, Kou S-Z, Shen B-S, Lang JW, Yang Z, Yan X-B (2014) Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge. Chin Chem Lett 25(6):859–864.  https://doi.org/10.1016/j.cclet.2014.04.010 CrossRefGoogle Scholar
  38. 38.
    Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sources 294:180–186.  https://doi.org/10.1016/j.jpowsour.2015.06.068 CrossRefGoogle Scholar
  39. 39.
    Li MX, Wang XW, Yang YQ, Chang Z, Wu YP, Holze R (2015) A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membr Sci 476:112–118.  https://doi.org/10.1016/j.memsci.2014.10.056 CrossRefGoogle Scholar
  40. 40.
    Anju VG, Sampath S (2017) Stable, rechargeable lithium—oxygen battery in liquid and gel-based electrolytes. Electrochim Acta 252:119–126.  https://doi.org/10.1016/j.electacta.2017.08.173 CrossRefGoogle Scholar
  41. 41.
    Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70.  https://doi.org/10.1016/j.bios.2015.02.013 CrossRefGoogle Scholar
  42. 42.
    Su’ait MS, Rahman MYA (2015) Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol Energy 115:452–470.  https://doi.org/10.1016/j.solener.2015.02.043 CrossRefGoogle Scholar
  43. 43.
    Kalaignan GP, Kang M-S, Kang Y-S (2006) Effects of compositions on properties of PEO–KI–I2 salts polymer electrolytes for DSSC. Solid State Ionics 177(11-12):1091–1097.  https://doi.org/10.1016/j.ssi.2006.03.013 CrossRefGoogle Scholar
  44. 44.
    Freitas JN, Gonçalves AS, De Paoli MA, Durrant JR, Nogueira AF (2008) The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells. Electrochim Acta 53(24):7166–7172.  https://doi.org/10.1016/j.electacta.2008.05.009 CrossRefGoogle Scholar
  45. 45.
    Asano T, Kubo T, Nishikitani Y (2004) Electrochemical properties of dye-sensitized solar cells fabricated with PVDF-type polymeric solid electrolytes. J Photochem Photobiol A 164(1–3):111–115.  https://doi.org/10.1016/j.jphotochem.2003.12.021 CrossRefGoogle Scholar
  46. 46.
    Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J-I, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51(88):15894–15897.  https://doi.org/10.1039/C5CC06759F CrossRefGoogle Scholar
  47. 47.
    Chen J, Xia J, Fan K, Peng T (2011) A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells. Electrochim Acta 56(16):5554–5560.  https://doi.org/10.1016/j.electacta.2011.03.109 CrossRefGoogle Scholar
  48. 48.
    Cipolla MP, De Gregorio GL, Grisorio R, Giannuzzi R, Gigli G, Suranna GP, Manca M (2017) An ion conductive polysiloxane as effective gel electrolyte for long stable dye solar cells. J Power Sources 356:191–199.  https://doi.org/10.1016/j.jpowsour.2017.04.080 CrossRefGoogle Scholar
  49. 49.
    Farhana NK, Khanmirzaei MH, Ramesh S, Ramesh K (2017) Exploration on polypropylene carbonate polymer for gel polymer electrolyte preparation and dye-sensitized solar cell application. J Appl Polym Sci 134(29):45091.  https://doi.org/10.1002/app.45091 CrossRefGoogle Scholar
  50. 50.
    Mohamad Sri MNS, Buraidah MH, Teo LP (2017) Effect of 1-butyl-3-methylimidazolium iodide on the performance of dye-sensitized solar cell having PEO-PVA based gel polymer electrolyte. Mater Today Proc 4(4):5161–5168.  https://doi.org/10.1016/j.matpr.2017.05.022 CrossRefGoogle Scholar
  51. 51.
    Huo Z, Wang L, Tao L, Ding Y, Yi J, Alsaedi A, Hayat T, Dai S (2017) A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes. J Power Sources 359:80–87.  https://doi.org/10.1016/j.jpowsour.2017.04.099 CrossRefGoogle Scholar
  52. 52.
    Wang M, Chamberland N, Breau N, Moser J-E, Humphry-Baker R, Marsan B, Zakeeruddin SM, Grätzel M (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat Chem 2(5):385–389.  https://doi.org/10.1038/nchem.610 CrossRefGoogle Scholar
  53. 53.
    Tian H, Sun L (2011) Iodine-free redox couples for dye-sensitized solar cells. J Mater Chem 21(29):10592–10601.  https://doi.org/10.1039/c1jm10598a CrossRefGoogle Scholar
  54. 54.
    Gregg BA, Pichot F, Ferrere S, Fields CL (2001) Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J Phys Chem B 105(7):1422–1429.  https://doi.org/10.1021/jp003000u CrossRefGoogle Scholar
  55. 55.
    Hamann TW, Farha OK, Hupp JT (2008) Outer-sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition. J Phys Chem C 112(49):19756–19764.  https://doi.org/10.1021/jp807395g CrossRefGoogle Scholar
  56. 56.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634.  https://doi.org/10.1126/science.1209688 CrossRefGoogle Scholar
  57. 57.
    Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S (2010) Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte. J Non-Cryst Solids 356(43):2277–2281.  https://doi.org/10.1016/j.jnoncrysol.2010.08.011 CrossRefGoogle Scholar
  58. 58.
    Berwig E, Severgnini VLS, Soldi MS, Bianco G, Pinheiro EA, Pires ATN, Soldi V (2003) Thermal degradation of ionene polymers in inert atmosphere. Polym Degrad Stab 79(1):93–98.  https://doi.org/10.1016/S0141-3910(02)00259-8 CrossRefGoogle Scholar
  59. 59.
    Vrandečić NS, Erceg M, Jakić M, Klarić I (2010) Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochim Acta 498(1-2):71–80.  https://doi.org/10.1016/j.tca.2009.10.005 CrossRefGoogle Scholar
  60. 60.
    Wang H, Liu S, KelongHuang YX, Liu Y, Peng S (2012) Int J Electrochem Sci 7:1688–1698Google Scholar
  61. 61.
    Benedetti JE, Gonçalves AD, Formiga ALB, De Paoli M-A, Li X, Durrant JR, Nogueira AF (2010) A polymer gel electrolyte composed of a poly(ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells. J Power Sources 195(4):1246–1255.  https://doi.org/10.1016/j.jpowsour.2009.09.008 CrossRefGoogle Scholar
  62. 62.
    Justin Raj C, Varma KBR (2010) Synthesis and electrical properties of the (PVA)0.7(KI)0.3·xH2SO4 (0≤x≤5) polymer electrolytes and their performance in a primary Zn/MnO2 battery. Electrochem Acta 56(2):649–656.  https://doi.org/10.1016/j.electacta.2010.09.076 CrossRefGoogle Scholar
  63. 63.
    Krejza O, Velická J, Sedlaříková M, Vondrák J (2008) The presence of nanostructured Al2O3 in PMMA-based gel electrolytes. J Power Sources 178(2):774–778.  https://doi.org/10.1016/j.jpowsour.2007.11.018 CrossRefGoogle Scholar
  64. 64.
    Nithya H, Selvasekarapandian S, Arun Kumar D, Sakunthala A, Hema M, Christopherselvin P, Kawamura J, Baskaran R, Sanjeeviraja C (2011) Thermal and dielectric studies of polymer electrolyte based on P(ECH-EO). Mater Chem Phys 126(1–2):404–408.  https://doi.org/10.1016/j.matchemphys.2010.10.047 CrossRefGoogle Scholar
  65. 65.
    Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics 189(1):63–68.  https://doi.org/10.1016/j.ssi.2011.03.004 CrossRefGoogle Scholar
  66. 66.
    Munar A, Andrio A, Iserte R, Compañ V (2011) Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. J Non-Cryst Solids 357(16–17):3064–3069.  https://doi.org/10.1016/j.jnoncrysol.2011.04.012 CrossRefGoogle Scholar
  67. 67.
    Shubha N, Prasanth R, Hoon HH, Srinivasan M (2014) Plastic crystalline-semi crystalline polymer composite electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene) porous membranes for lithium ion batteries. Electrochim Acta 125:362–370.  https://doi.org/10.1016/j.electacta.2014.01.024 CrossRefGoogle Scholar
  68. 68.
    Shaplov AS, Ponkratov DO, Aubert P-H, Lozinskaya EI, Plesse C, Maziz A, Vlasov PS, Vidal F, Vygodskii YS (2014) Truly solid state electrochromic devices constructed from polymeric ionic liquids as solid electrolytes and electrodes formulated by vapor phase polymerization of 3,4-ethylenedioxythiophene. Polymer 55(16):3385–3396.  https://doi.org/10.1016/j.polymer.2014.04.013 CrossRefGoogle Scholar
  69. 69.
    Aziz SB, Abidin ZHZ, Arof AK (2010) Effect of silver nanoparticles on the DC conductivity in chitosan–silver triflate polymer electrolyte. Physica B 405(21):4429–4433.  https://doi.org/10.1016/j.physb.2010.08.008 CrossRefGoogle Scholar
  70. 70.
    Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373(1):23–27.  https://doi.org/10.1016/j.physb.2005.10.104 CrossRefGoogle Scholar
  71. 71.
    Kumar PP, Yashonath S (2006) Ionic conduction in the solid state. Chem Sci 118(1):135–154.  https://doi.org/10.1007/BF02708775 CrossRefGoogle Scholar
  72. 72.
    Bandara TMWJ, Fernando HDNS, Furlani M, Albinsson I, Dissanayake MAKL, Mellander BE (2016) Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells. RSC Adv 6(105):103683–103691.  https://doi.org/10.1039/C6RA22335D CrossRefGoogle Scholar
  73. 73.
    Bandara TM, Fernando HD, Furlani M, Albinsson I, Dissanayake MA, Ratnasekera JL, Mellander BE (2016) Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells. Phys Chem Chem Phys 18(16):10873–10881.  https://doi.org/10.1039/C6CP00013D CrossRefGoogle Scholar
  74. 74.
    D’Andrade BW, Datta S, Forrest SR, Djurovich P, Polikarpov E, Thompson ME (2005) Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org Electron 6(1):11–20.  https://doi.org/10.1016/j.orgel.2005.01.002 CrossRefGoogle Scholar
  75. 75.
    Djurovich PI, Mayo EI, Forrest SR, Thompson ME (2009) Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org Electron 10(3):515–520.  https://doi.org/10.1016/j.orgel.2008.12.011 CrossRefGoogle Scholar
  76. 76.
    Huang Y, Zhang M, Ye L, Guo X, Han CC, Li Y, Hou J (2012) Molecular energy level modulation by changing the position of electron-donating side groups. J Mater Chem 22(12):5700–5705.  https://doi.org/10.1039/c2jm16474d CrossRefGoogle Scholar
  77. 77.
    Olson C, Veldman D, Bakker K, Lenzmann F (2011) Int J Photoenergy 2011:11CrossRefGoogle Scholar
  78. 78.
    Bedja I, Hagfeldt A (2011) Comparative study between dye-sensitized and CdS quantum-dots-sensitized TiO2 solar cells using photoinduced absorption Spectroscopy. Advances in OptoElectronics 2011:5Google Scholar
  79. 79.
    Yogananda KC, Ramasamy E, Kumar S, Vasantha Kumar S, Navya Rani M, Rangappa D (2017) Novel rice starch based aqueous gel electrolyte for dye sensitized solar cell application. Materials Today: Proceedings 4:12238–12244CrossRefGoogle Scholar
  80. 80.
    Jin YS, Kim KH, Kim WJ, Jang KU, Choi HW (2012) The effect of RF-sputtered TiO2 passivating layer on the performance of dye sensitized solar cells. Ceram Int 38:S505–S509.  https://doi.org/10.1016/j.ceramint.2011.05.064 CrossRefGoogle Scholar
  81. 81.
    Khalili M, Abedi M, Amoli HS, Mozaffari SA (2017) Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells. Carbohydr Polym 175:1–6.  https://doi.org/10.1016/j.carbpol.2017.07.061 CrossRefGoogle Scholar
  82. 82.
    Sonai GG, Tiihonen A, Miettunen K, Lund PD, Nogueira AF (2017) Long-term stability of dye-sensitized solar cells assembled with cobalt polymer gel electrolyte. J Phys Chem C 121(33):17577–17585.  https://doi.org/10.1021/acs.jpcc.7b03865 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Garbas Anacleto dos Santos Junior
    • 1
  • Ana Flávia Nogueira
    • 1
  1. 1.Laboratório de Nanotecnologia e Energia Solar (LNES), Chemistry InstituteUniversity of Campinas, UNICAMPCampinasBrazil

Personalised recommendations