Skip to main content

Advertisement

Log in

Synthesis of NiO/Fe2O3 nanocomposites as substrate for the construction of electrochemical biosensors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The exploration of substrate materials to construct electrochemical biosensors for glucose monitoring in the field of clinical diagnosis, especially for diabetes is still being investigated extensively. In this paper, NiO/Fe2O3 nanocomposites are designed and synthesized by two-step hydrothermal approach in combination with calcinations. The morphology and microstructure are studied by SEM, XRD, XPS, and TEM systematically. Optimized NiO/Fe2O3 nanocomposites are employed as substrate to construct glucose biosensors, and the electrochemical properties are carried out by cyclic voltammetric and chronoamperometric techniques. The results indicate as-prepared biosensors achieve a high sensitivity of 230.5 μA cm−2 mM−1, wide linear range between 50 and 2867 μM, and low detection limit of 3.9 μM towards glucose detection. The synergistic effect between NiO and Fe2O3 as substrate to construct glucose biosensors is elucidated. The selectivity is acceptable based on the detection of glucose concentration for diabetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825. https://doi.org/10.1021/cr068123a

    Article  CAS  Google Scholar 

  2. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763. https://doi.org/10.1039/b714449k

    Article  CAS  Google Scholar 

  3. Yang M, Qu F, Lu Y, He Y, Shen G, Yu R (2006) Platinum nanowire nanoelectrode array for the fabrication of biosensors. Biomaterials 27(35):5944–5950. https://doi.org/10.1016/j.biomaterials.2006.08.014

    Article  CAS  Google Scholar 

  4. Wang Y, Zhu Y, Chen J, Zeng Y (2012) Amperometric biosensor based on 3D ordered freestanding porous Pt nanowire array electrode. Nano 4:6025–6031

    CAS  Google Scholar 

  5. Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7(4):3540–3546. https://doi.org/10.1021/nn400482d

    Article  CAS  Google Scholar 

  6. Cui J, Adeloju SB, Wu Y (2014) Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection. Anal Chim Acta 809:134–140. https://doi.org/10.1016/j.aca.2013.11.024

    Article  CAS  Google Scholar 

  7. German N, Kausaite-Minkstimiene A, Ramanavicius A, Semashko T, Mikhailova R, Ramanaviciene A (2015) The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole. Electrochim Acta 169:326–333. https://doi.org/10.1016/j.electacta.2015.04.072

    Article  CAS  Google Scholar 

  8. Wang L, Gao X, Jin L, Wu Q, Chen Z, Lin X (2013) Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sens Actuat B: Chem 176:9–14. https://doi.org/10.1016/j.snb.2012.08.077

    Article  CAS  Google Scholar 

  9. Li Z, Gao F, Gu Z (2017) Vertically aligned Pt nanowire array/Au nanoparticle hybrid structure as highly sensitive amperometric biosensors. Sens Actuat B: Chem 243:1092–1101. https://doi.org/10.1016/j.snb.2016.12.033

    Article  CAS  Google Scholar 

  10. Wang H, Wang X, Zhang X, Qin X, Zhao Z, Miao Z, Huang N, Chen Q (2009) A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron 25(1):142–146. https://doi.org/10.1016/j.bios.2009.06.022

    Article  Google Scholar 

  11. Li C, Liu Y, Li L, Du Z, Xu S, Zhang M, Yin X, Wang T (2008) A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta 77(1):455–459. https://doi.org/10.1016/j.talanta.2008.06.048

    Article  CAS  Google Scholar 

  12. Tyagi M, Tomar M, Gupta V (2012) Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor. Anal Chim Acta 726:93–101. https://doi.org/10.1016/j.aca.2012.03.027

    Article  CAS  Google Scholar 

  13. Singh J, Kalita P, Singh MK, Malhotra BD (2011) Nanostructured nickel oxide-chitosan film for application to cholesterol sensor. Appl Phys Lett 98(123702):1–3

    Google Scholar 

  14. Wang S, Tan Y, Zhao D, Liu G (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosens Bioelectron 23(12):1781–1787. https://doi.org/10.1016/j.bios.2008.02.014

    Article  CAS  Google Scholar 

  15. Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5):2016–2022. https://doi.org/10.1016/j.talanta.2009.11.010

    Article  CAS  Google Scholar 

  16. Perez JM (2007) Iron oxide nanoparticles: hidden talent. Nature Nanotechnol 2(9):535–536. https://doi.org/10.1038/nnano.2007.282

    Article  CAS  Google Scholar 

  17. Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens Bioelectron 24(4):676–683. https://doi.org/10.1016/j.bios.2008.06.032

    Article  CAS  Google Scholar 

  18. Umar A, Ahmad R, Al-Hajry A, Kim SH, Abaker ME, Hahn Y-B (2014) Spruce branched α-Fe2O3 nanostructures as potential scaffolds for a highly sensitive and selective glucose biosensor. New J Chem 38(12):5873–5879. https://doi.org/10.1039/C4NJ01148A

    Article  CAS  Google Scholar 

  19. Baratella D, Magro M, Sinigaglia G, Zboril R, Salviulo G, Vianello F (2013) A glucose biosensor based on surface active maghemite nanoparticles. Biosens Bioelectron 45:13–18. https://doi.org/10.1016/j.bios.2013.01.043

    Article  CAS  Google Scholar 

  20. Yang C, Xu C, Wang X (2012) ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications. Langmuir 28(9):4580–4585. https://doi.org/10.1021/la2044202

    Article  CAS  Google Scholar 

  21. Zhao J, Mu F, Qin L, Jia X, Yang C (2015) Synthesis and characterization of MgO/ZnO composite nanosheets for biosensor. Mater Chem Phys 166:176–181. https://doi.org/10.1016/j.matchemphys.2015.09.044

    Article  CAS  Google Scholar 

  22. Zhang X, Gu A, Wang G, Huang Y, Ji H, Fang B (2011) Porous Cu-NiO modified glass carbon electrode enhanced nonenzymatic glucose electrochemical sensors. Analyst 136(24):5175–5180. https://doi.org/10.1039/c1an15784a

    Article  CAS  Google Scholar 

  23. Cui J, Luo J, Peng B, Zhang X, Zhang Y, Wang Y, Qin Y, Zheng H, Shu X, Wu Y (2016) Synthesis of porous NiO/CeO2 hybrid nanoflake arrays as a platform for electrochemical biosensing. Nano 8:770–774

    CAS  Google Scholar 

  24. Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14(2):731–73e. https://doi.org/10.1021/nl404008e

    Article  CAS  Google Scholar 

  25. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254(8):2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  26. Peck MA, Langell MA (2012) Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem Mater 24(23):4483–4490. https://doi.org/10.1021/cm300739y

    Article  CAS  Google Scholar 

  27. Cai GF, Tu JP, Zhang J, Mai YJ, Lu Y, Gu CD, Wang XL (2012) An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nano 4:5724–5730

    CAS  Google Scholar 

  28. Yan X, Tong X, Wang J, Gong C, Zhang M, Liang L (2014) Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application. J Alloy Compd 593:184–189. https://doi.org/10.1016/j.jallcom.2014.01.036

    Article  CAS  Google Scholar 

  29. Wang G, Lu X, Zhai T, Ling Y, Wang H, Tong Y, Li Y (2012) Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Nano 4:3123–3127

    CAS  Google Scholar 

  30. Katsuki H, Komarneni S (2001) Microwave-hydrothermal synthesis of monodispersed nanophase α-Fe2O3. J Am Ceram Soc 84:2313–2317

    Article  CAS  Google Scholar 

  31. Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87(3):1903–1910. https://doi.org/10.1021/ac5041555

    Article  CAS  Google Scholar 

  32. Chu X, Zhu X, Dong Y, Chen T, Ye M, Sun W (2012) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods. J Electroanal Chem 676:20–26. https://doi.org/10.1016/j.jelechem.2012.04.009

    Article  CAS  Google Scholar 

  33. Zhao Y, Fang X, Yan X, Zhang X, Kang Z, Zhang G, Zhang Y (2014) Nanorod arrays composed of zinc oxide modified with gold nanoparticles and glucose oxidase for enzymatic sensing of glucose. Microchim Acta 182:605–610

    Article  Google Scholar 

  34. Zhao ZW, Chen XJ, Tay BK, Chen JS, Han ZJ, Khor KA (2007) A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose. Biosens Bioelectron 23(1):135–139. https://doi.org/10.1016/j.bios.2007.03.014

    Article  CAS  Google Scholar 

  35. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712A–724A

    Article  CAS  Google Scholar 

  36. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658–666. https://doi.org/10.1021/ja01318a036

    Article  CAS  Google Scholar 

  37. Feng X, Cheng HJ, Pan YW, Zheng H (2015) Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite. Biosens Bioelectron 70:411–417. https://doi.org/10.1016/j.bios.2015.03.046

    Article  CAS  Google Scholar 

  38. Xiang D, Yin LW, Ma JY, Guo EY, Li Q, Li ZQ, Liu KG (2014) Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites. Analyst 140:644–653

    Article  Google Scholar 

  39. Patil D, Dung NQ, Jung H, Ahn SY, Jang DM, Kim D (2012) Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Biosens Bioelectron 31(1):176–181. https://doi.org/10.1016/j.bios.2011.10.013

    Article  CAS  Google Scholar 

  40. Egi M, Bellomo R, Stachowski E, French CJ, Hart GK, Hegarty C, Bailey M (2008) Blood glucose concentration and outcome of critical illness: the impact of diabetes. Criti Care Med 36(8):2249–2255. https://doi.org/10.1097/CCM.0b013e318181039a

    Article  CAS  Google Scholar 

  41. Li Y, Song Y-Y, Yang C, Xia X-H (2007) Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem Commun 9(5):981–988. https://doi.org/10.1016/j.elecom.2006.11.035

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Nos. 51402081, 51502071 and 51272063) and AVIC Institute of Fundamental Technology Innovation Fund (Grant No. JCY2015A001). Dr. Jiewu Cui is grateful to the financial support from the Fundamental Research Funds for the Central Universities (No. JZ2016HGTB0719 and JZ2017HGTB0203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiewu Cui, Yan Wang or Yucheng Wu.

Ethics declarations

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 28882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Cui, J., Wang, Y. et al. Synthesis of NiO/Fe2O3 nanocomposites as substrate for the construction of electrochemical biosensors. J Solid State Electrochem 22, 1763–1770 (2018). https://doi.org/10.1007/s10008-018-3882-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3882-6

Keywords

Navigation