Skip to main content
Log in

Ion transport studies in nanocomposite polymer electrolyte membrane of PVA–[C4C1Im][HSO4]–SiO2

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The paper reports the effect of SiO2 nano-filler on structural, thermal, and ion transport properties of polymer electrolyte system comprising polyvinyl alcohol (PVA) and 1-butyl-3-methylimidazolium hydrogen sulfate [C4C1Im][HSO4] ionic liquid. The addition of SiO2 nano-filler results into enhancement in amorphicity and thermal stability and lowering of glass transition temperature of the membranes. A detailed investigation of possible interactions among the constituents PVA, [C4C1Im][HSO4] and SiO2, and cation–anion and anion–anion pairs of [C4C1Im][HSO4] in the polymer electrolyte and their dissociation due to SiO2 filler has been carried out in the membranes using Fourier transform infra-red (FTIR) and Raman spectroscopy. The membranes show maximum room temperature ionic conductivity as 9.9 × 10−3 S cm−1 for 6 wt.% of the nano-filler which is about four times higher than the membrane without nano-filler and an order higher than pure [C4C1Im][HSO4]. With temperature, the ionic conductivity shows VTF behavior in the temperature range 40–120 °C. On the basis of FTIR and ion transport results, a model for ion transport in the membranes is proposed.

Schematic model of ion transport in nanocomposite polymer electrolyte membrane of PVA-[C4C1Im][HSO4]-SiO2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kim DJ, Jo MJ, Nam SY (2015) A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52. https://doi.org/10.1016/j.jiec.2014.04.030

    Article  CAS  Google Scholar 

  2. Wang YJ, Qiao J, Baker R, Zhang J (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chem Soc Rev 42(13):5768–5787. https://doi.org/10.1039/c3cs60053j

    Article  CAS  Google Scholar 

  3. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259(1-2):10–26. https://doi.org/10.1016/j.memsci.2005.01.035

    Article  CAS  Google Scholar 

  4. Jannasch P (2003) Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr Opin Colloid Interface Sci 8(1):96–102. https://doi.org/10.1016/S1359-0294(03)00006-2

    Article  CAS  Google Scholar 

  5. Bella RSD, Hirankumar G, Krishnaraj RN, Anand DP (2016) Novel proton conducting polymer electrolyte and its application in microbial fuel cell. Mater Lett 164:551–553. https://doi.org/10.1016/j.matlet.2015.11.066

    Article  Google Scholar 

  6. Hossain S, Abdalla AM, Jamain SNB, Zaini JH, Azad AK (2017) A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew Sust Energ Rev 79:750–764. https://doi.org/10.1016/j.rser.2017.05.147

    Article  CAS  Google Scholar 

  7. Pratap R, Singh B, Chandra S (2006) Polymeric rechargeable solid-state proton battery. J Power Sources 161(1):702–706. https://doi.org/10.1016/j.jpowsour.2006.04.020

    Article  CAS  Google Scholar 

  8. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55(4):1475–1482. https://doi.org/10.1016/j.electacta.2009.05.011

    Article  CAS  Google Scholar 

  9. Mishra K, Hashmi SA, Rai DK (2014) Studies on a proton battery using gel polymer electrolyte. High Perform Polym 26(6):672–676. https://doi.org/10.1177/0954008314537540

  10. Mishra K, Hashmi SA, Rai DK (2013) Nanocomposite blend gel polymer electrolyte for proton battery application. J Solid State Electrochem 17(3):785–793. https://doi.org/10.1007/s10008-012-1926-x

    Article  CAS  Google Scholar 

  11. Mishra K, Hashmi SA, Rai DK (2014) Protic ionic liquid-based gel polymer electrolyte: structural and ion transport studies and its application in proton battery. J Solid State Electrochem 18(8):2255–2266. https://doi.org/10.1007/s10008-014-2475-2

    Article  CAS  Google Scholar 

  12. Łatoszyńska AA, Taberna PL, Simon P, Wieczorek W (2017) Proton conducting gel polymer electrolytes for supercapacitor applications. Electrochim Acta 242:31–37. https://doi.org/10.1016/j.electacta.2017.04.122

    Article  Google Scholar 

  13. Gao H, Lian K (2014) Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv 4(62):33091–33113. https://doi.org/10.1039/C4RA05151C

    Article  CAS  Google Scholar 

  14. Gao H, Lian K (2011) High rate all-solid electrochemical capacitors using proton conducting polymer electrolytes. J Power Sources 196(20):8855–8857. https://doi.org/10.1016/j.jpowsour.2011.06.032

    Article  CAS  Google Scholar 

  15. Sellam, Hashmi SA (2014) Quasi-solid-state pseudocapacitors using proton-conducting gel polymer electrolyte and poly(3-methyl thiophene)–ruthenium oxide composite electrodes. J Solid State Electrochem 18:465–475. https://doi.org/10.1007/s10008-013-2276-z

  16. Ketabi S, Decker B, Lian K (2016) Proton conducting ionic liquid electrolytes for liquid and solid-state electrochemical pseudocapacitors. Solid State Ionics 298:73–79. https://doi.org/10.1016/j.ssi.2016.11.010

    Article  CAS  Google Scholar 

  17. Sellam, Hashmi SA (2013) High Rate Performance of Flexible Pseudocapacitors fabricated using Ionic-Liquid-Based ProtonConducting Polymer Electrolyte with Poly(3, 4-ethylenedioxythiophene):Poly(styrene sulfonate) and ItsHydrous Ruthenium Oxide Composite Electrodes. ACS Appl Mater Interfaces 5(9):3875–3883. https://doi.org/10.1021/am4005557

  18. Liew CW, Ramesh S, Arof AK (2015) Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors. Int J Hydrog Energy 40(1):852–862. https://doi.org/10.1016/j.ijhydene.2014.09.160

    Article  CAS  Google Scholar 

  19. Bruce PG (1995) Solid state electrochemistry. Cambridge University Press, New York

    Google Scholar 

  20. Malik RS, Tripathi SN, Gupta D, Choudhary V (2014) Novel anhydrous composite membranes based on sulfonated poly (ether ketone) and aprotic ionic liquids for high temperature polymer electrolyte membranes for fuel cell applications. Int J Hydrog Energy 39(24):12826–12834. https://doi.org/10.1016/j.ijhydene.2014.06.060

    Article  CAS  Google Scholar 

  21. Mishra AK, Kim NH, Lee JH (2014) Effects of ionic liquid-functionalized mesoporous silica on the proton conductivity of acid-doped poly(2,5-benzimidazole) composite membranes for high-temperature fuel cells. J Membr Sci 449:136–145. https://doi.org/10.1016/j.memsci.2013.08.023

    Article  CAS  Google Scholar 

  22. Ohno H, Yoshizawa M, Ogihara W (2004) Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta 50(2-3):255–261. https://doi.org/10.1016/j.electacta.2004.01.091

    Article  CAS  Google Scholar 

  23. Pundir SS, Mishra K, Rai DK (2013) Studies on PEO-BMImHSO4 solid polymer electrolyte. AIP Conf Proc 1512:1266–1267. https://doi.org/10.1063/1.4791513

  24. Pundir SS, Mishra K, Rai DK (2015) Poly(vinyl)alcohol/1-butyl-3-methylimidazolium hydrogen sulfate solid polymer electrolyte: Structural and electrical studies. Solid State Ionics 275:86–91. https://doi.org/10.1016/j.ssi.2015.03.024

    Article  CAS  Google Scholar 

  25. Schmidt C, Glück T, Naake GS (2008) Modification of Nafion membranes by impregnation with ionic liquids. Chem Eng Technol 31(1):13–22. https://doi.org/10.1002/ceat.200700054

    Article  CAS  Google Scholar 

  26. Díaz M, Ortiz A, Ortiz I (2014) Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J Membr Sci 469:379–396. https://doi.org/10.1016/j.memsci.2014.06.033

    Article  Google Scholar 

  27. Liew C-W, Ramesh S, Arof AK (2014) A novel approach on ionic liquid-based poly(vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int J Hydrog Energy 39(6):2917–2928. https://doi.org/10.1016/j.ijhydene.2013.07.092

    Article  CAS  Google Scholar 

  28. Thanganathan U, Nogami M (2015) Investigations on effects of the incorporation of various ionic liquids on PVA based hybrid membranes for proton exchange membrane fuel cells. Int J Hydrog Energy 40(4):1935–1944. https://doi.org/10.1016/j.ijhydene.2014.11.099

    Article  CAS  Google Scholar 

  29. Ven EVD, Chairuna A, Merle G, Benito SP, Borneman Z, Nijmeijer K (2013) Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. J Power Sources 222:202–209. https://doi.org/10.1016/j.jpowsour.2012.07.112

  30. Ogihara W, Kosukegawa H, Ohno H (2006) Proton-conducting ionic liquids based upon multivalent anions and alkylimidazolium cations. Chem Commun 0(34):3637–3639. https://doi.org/10.1039/b606186a

    Article  CAS  Google Scholar 

  31. Nakamoto H, Watanabe M (2007) Brønsted acid–base ionic liquids for fuel cell electrolytes. Chem Commun 24:2539–2541. https://doi.org/10.1039/B618953A

  32. Agnihotry SA, Ahmad S, Gupta D, Ahmad S (2004) Composite gel electrolytes based on poly(methylmethacrylate) and hydrophilic fumed silica. Electrochim Acta 49(14):2343–2349. https://doi.org/10.1016/j.electacta.2004.01.015

    Article  CAS  Google Scholar 

  33. Jacob MME, Hackett E, Giannelis EP (2003) From nanocomposite to nanogel polymer electrolytes. J Mater Chem 13(1):1–5. https://doi.org/10.1039/b204458g

    Article  CAS  Google Scholar 

  34. Krishnan NN, Henkensmeier D, Jang JH, Kim H-J (2014) Nanocomposite Membranes for Polymer Electrolyte Fuel Cells. Macromol Mater Eng 299:1031–1041. https://doi.org/10.1002/mame.201300378

  35. Saikia D, Kumar A (2005) Ionic conduction studies in P(VDF–HFP)–LiAsF6–(PC + DEC)–fumed SiO2 composite gel polymerelectrolyte system. Phys Status Solidi A 202(2):309–315. https://doi.org/10.1002/pssa.200406922

  36. Salarizadeh P, Javanbakht M, Abdollahi M, Naji L (2013) Preparation, characterization and properties of proton exchange nanocomposite membranes based on poly(vinyl alcohol) and poly(sulfonic acid)-grafted silica nanoparticles. Int J Hydrog Energy 38(13):5473–5479. https://doi.org/10.1016/j.ijhydene.2012.07.079

    Article  CAS  Google Scholar 

  37. Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147(5):1718–1721. https://doi.org/10.1149/1.1393423

    Article  CAS  Google Scholar 

  38. Zhang H, Maitra P, Wunder SL (2008) Preparation and characterization of composite electrolytes based on PEO(375)-grafted fumed silica. Solid State Ionics 178(39-40):1975–1983. https://doi.org/10.1016/j.ssi.2007.11.021

    Article  CAS  Google Scholar 

  39. Eguizábal A, Lemus J, Roda V, Urbiztondo M, Barreras F, Pina MP (2012) Nanostructured electrolyte membranes based on zeotypes, protic ionic liquids and porous PBI membranes: preparation, characterization and MEA testing. Int J Hydrog Energy 37(8):7221–7234. https://doi.org/10.1016/j.ijhydene.2011.11.074

    Article  Google Scholar 

  40. Karthikeyan C, Nunes S, Prado L, Ponce M, Silva H, Ruffmann B, Schulte K (2005) Polymer nanocomposite membranes for DMFC application. J Membr Sci 254(1-2):139–146. https://doi.org/10.1016/j.memsci.2004.12.048

    Article  CAS  Google Scholar 

  41. Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36(7):945–979. https://doi.org/10.1016/j.progpolymsci.2010.12.005

    Article  CAS  Google Scholar 

  42. Kerscher B, Schüler F, Appel AK, Schadt K, Mülhaupt R (2013) Nanostructured polymeric ionic liquids. In: Percec V (ed) Hierarchical macromolecular structures: 60 years after the Staudinger Nobel prize II. Springer, Berlin, pp 431–446

    Chapter  Google Scholar 

  43. Ketabi S, Lian K (2013) Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim Acta 103:174–178. https://doi.org/10.1016/j.electacta.2013.04.053

    Article  CAS  Google Scholar 

  44. Ye YS, Wang H, Bi SG, Xue Y, Xue ZG, Liao YG, Zhou XP, Xie XL, Mai YW (2015) Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials. Carbon 86:86–97. https://doi.org/10.1016/j.carbon.2015.01.016

    Article  CAS  Google Scholar 

  45. Upadhyay D, Bhat N (2005) Separation of azeotropic mixture using modified PVA membrane. J Membr Sci 255(1-2):181–186. https://doi.org/10.1016/j.memsci.2005.01.033

    Article  CAS  Google Scholar 

  46. Gao H, Lian K (2010) Characterizations of proton conducting polymer electrolytes for electrochemical capacitors. Electrochim Acta 56(1):122–127. https://doi.org/10.1016/j.electacta.2010.09.036

    Article  CAS  Google Scholar 

  47. Dai CA, Chang CJ, Kao AC, Tsai WB, Chen WS, Liu MW, Shih WP, Ma CC (2009) Polymer actuator based on PVA/PAMPS ionic membrane: optimization of ionic transport properties. Sens Actuators A 155(1):152–162. https://doi.org/10.1016/j.sna.2009.08.002

    Article  CAS  Google Scholar 

  48. Murahashi S, Yûcki H, Sano T, Yonemura U, Tadokoro H, Chatani Y (1962) Isotactic polyvinyl alcohol. J Polym Sci 62(174):S77–S81. https://doi.org/10.1002/pol.1962.1206217430

    Article  CAS  Google Scholar 

  49. Sobota M, Schmid M, Happel M, Amende M, Maier F, Steinruck HP, Paape N, Wasserscheid P, Laurin M, Gottfried JM, Libuda J (2010) Ionic liquid based model catalysis: interaction of [BMIM][Tf2N] with Pd nanoparticles supported on an ordered alumina film. Phys Chem Chem Phys 12(35):10610–10621. https://doi.org/10.1039/c003753b

    Article  CAS  Google Scholar 

  50. Rubero SR, Baldelli S (2006) Surface characterization of 1-butyl-3-methylimidazolium Br-, I-, PF6-, BF4-, (CF3SO2)2N-, SCN-, CH3SO3-, CH3SO4-, and (CN)2N-ionic liquids by sum frequency generation. J Phys Chem B 110(10):4756–4765. https://doi.org/10.1021/jp0563989

    Article  Google Scholar 

  51. Hamaguchi H, Ozawa R (2005) Adv Chem Phys 131:85–104

    CAS  Google Scholar 

  52. Yacovitch TI, Wende T, Jiang L, Heine N, Meijer G, Neumark DM, Asmis KR (2011) Infrared spectroscopy of hydrated bisulfate anion clusters: HSO4¯(H2O)1–16. J Phys Chem Lett 2(17):2135–2140. https://doi.org/10.1021/jz200917f

    Article  CAS  Google Scholar 

  53. Ribeiro MCC (2012) High viscosity of imidazolium ionic liquids with the hydrogen sulfate anion: a Raman spectroscopy study. J Phys Chem B 116(24):7281–7290. https://doi.org/10.1021/jp302091d

    Article  CAS  Google Scholar 

  54. Shi J, Wu P, Yan F (2010) Further investigation of the intermolecular interactions and component distributions in a [Bmim][BF4]-based polystyrene composite membranes using two-dimensional correlation infrared spectroscopy. Langmuir 26(13):11427–11434. https://doi.org/10.1021/la1009225

    Article  CAS  Google Scholar 

  55. Berg RW (2007) Raman spectroscopy and Ab-Initio model calculations on ionic liquids. Monatsh Chem 138(11):1045–1075. https://doi.org/10.1007/s00706-007-0760-9

    Article  CAS  Google Scholar 

  56. Mbhele ZH, Salemane MG, Sittert CGCEV, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver−polyvinyl alcohol nanocomposites. Chem Mater 15(26):5019–5024. https://doi.org/10.1021/cm034505a

    Article  CAS  Google Scholar 

  57. Choi BK, Shin KH (1996) Effects of SiC fillers on the electrical and mechanical properties of (PEO)16LiClO4 electrolytes. Solid State Ionics 86–88:303–306. https://doi.org/10.1016/0167-2738(96)00134-8

  58. Pandey GP, Agrawal RC, Hashmi SA (2011) Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application. J Phys Chem Solids 72(12):1408–1413. https://doi.org/10.1016/j.jpcs.2011.08.003

    Article  CAS  Google Scholar 

  59. Kumar D, Hashmi SA (2010) Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195(15):5101–5108. https://doi.org/10.1016/j.jpowsour.2010.02.026

    Article  CAS  Google Scholar 

  60. Maier J (1995) Ionic conduction in space charge regions. Prog Solid State Chem 23(3):171–263. https://doi.org/10.1016/0079-6786(95)00004-E

    Article  CAS  Google Scholar 

  61. Kumar B (2004) From colloidal to composite electrolytes: properties, peculiarities, and possibilities. J Power Sources 135(1-2):215–231. https://doi.org/10.1016/j.jpowsour.2004.04.038

    Article  CAS  Google Scholar 

  62. Kumar B, Nellutla S, Thokchom JS, Chen C (2006) Ionic conduction through heterogeneous solids: delineation of the blocking and space charge effects. J Power Sources 160(2):1329–1335. https://doi.org/10.1016/j.jpowsour.2006.02.062

    Article  CAS  Google Scholar 

  63. Stassen HK, Ludwig R, Wulf A, Dupont J (2015) Imidazolium salt ion pairs in solution. Chem Eur J 21(23):8324–8335. https://doi.org/10.1002/chem.201500239

    Article  CAS  Google Scholar 

  64. Guitton J, Dongui B, Mosdale R, Forestier M (1988) New negative metallic electrode for solid batteries with a solid protonic conductor (SPC) as electrolyte. Solid State Ionics 28–30:847–852. https://doi.org/10.1016/S0167-2738(88)80157-7

  65. Munichandraiah N, Scanlon LG, Marsh RA, Kumar B, Sircar AK (1995) Influence of zeolite on electrochemical and physicochemical properties of polyethylene oxide solid electrolyte. J Appl Electrochem 25(9):857–863. https://doi.org/10.1007/BF00772205

    Article  CAS  Google Scholar 

  66. Sellam, Hashmi SA (2012) Enhanced zinc ion transport in gel polymer electrolyte: effect of nano-sized ZnO dispersion. J Solid State Electrochem 16:3105–3114. https://doi.org/10.1007/s10008-012-1733-4

  67. Pandey GP, Agrawal RC, Hashmi SA (2009) Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide. J Power Sources 190(2):563–572. https://doi.org/10.1016/j.jpowsour.2009.01.057

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to JIIT, Noida for providing the financial support for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pundir, S.S., Mishra, K. & Rai, D.K. Ion transport studies in nanocomposite polymer electrolyte membrane of PVA–[C4C1Im][HSO4]–SiO2. J Solid State Electrochem 22, 1801–1815 (2018). https://doi.org/10.1007/s10008-018-3881-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3881-7

Keywords

Navigation