Elevate the corrosion potential of Zn coatings using ceramic nanoparticles


It was observed that adding TiC nanoparticles (NPs) to zinc coating increased its corrosion resistance. To understand the beneficial role of TiC nanoparticles in suppressing corrosion, we studied the electrochemical behavior of TiC NP-added nanocomposite zinc coating, in comparison with those of coarse-grained and nanocrystalline zinc coatings, in simulated seawater. The surface electrochemical stability and surface electron stability, which are respectively reflected by corrosion potential and electron work function (EWF), were investigated. It is demonstrated that the increased corrosion resistance of nanocomposite zinc coating is ascribed to the fact that the TiC nanoparticles raise surface electron work function of the coating, corresponding to elevated surface electron stability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Magalhães AAO, Margarit ICP, Mattos OR (1999) Electrochemical characterization of chromate coatings on galvanized steel. Electrochim Acta 44(24):4281–4287. https://doi.org/10.1016/S0013-4686(99)00143-7

    Article  Google Scholar 

  2. 2.

    Cho KW, Rao VS, Kwon HS (2007) Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc. Electrochim Acta 52(13):4449–4456. https://doi.org/10.1016/j.electacta.2006.12.032

    CAS  Article  Google Scholar 

  3. 3.

    Thomas S, Cole IS, Sridhar M, Birbilis N (2013) Revisiting zinc passivation in alkaline solutions. Electrochim Acta 97:192–201. https://doi.org/10.1016/j.electacta.2013.03.008

    CAS  Article  Google Scholar 

  4. 4.

    Apte AD, Tare V, Bose P (2006) Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. J Hazard Mater 128(2-3):164–174. https://doi.org/10.1016/j.jhazmat.2005.07.057

    CAS  Article  Google Scholar 

  5. 5.

    Kong G, Lu JT, Zhang SH, Che CS, Wu HJ (2010) A comparative study of molybdate/silane composite films on galvanized steel with different treatment processes. Surf Coat Technol 205(2):545–550. https://doi.org/10.1016/j.surfcoat.2010.07.033

    CAS  Article  Google Scholar 

  6. 6.

    Tsai CY, Liu JS, Chen PL, Lin CS (2010) A two-step roll coating phosphate/molybdate passivation treatment for hot-dip galvanized steel sheet. Corros Sci 52(10):3385–3393. https://doi.org/10.1016/j.corsci.2010.06.020

    CAS  Article  Google Scholar 

  7. 7.

    Sahu SC, Samantara AK, Seth M, Parwaiz S, Singh BP, Rath PC, Jena BK (2013) A facile electrochemical approach for development of highly corrosion protective coatings using graphene nanosheets. Electrochem Commun 32:22–26. https://doi.org/10.1016/j.elecom.2013.03.032

    CAS  Article  Google Scholar 

  8. 8.

    Lin TH, Huang WH, Jun IK, Jiang P (2009) Electrophoretic co-deposition of biomimetic nanoplatelet–polyelectrolyte composites. Electrochem Commun 11(8):1635–1638. https://doi.org/10.1016/j.elecom.2009.06.017

    CAS  Article  Google Scholar 

  9. 9.

    Hashemi M, Mirdamadi S, Rezaie HR (2014) Effect of SiC nanoparticles on microstructure and wear behavior of Cu-Ni-W nanocrystalline coating. Electrochim Acta 138:224–231. https://doi.org/10.1016/j.electacta.2014.06.084

    CAS  Article  Google Scholar 

  10. 10.

    Liu L, Li Y, Wang FH (2008) Influence of grain size on the corrosion behavior of a Ni-based superalloy nanocrystalline coating in NaCl acidic solution. Electrochim Acta 53(5):2453–2462. https://doi.org/10.1016/j.electacta.2007.10.048

    CAS  Article  Google Scholar 

  11. 11.

    Li QY, Feng ZB, Liu LH, Xu H, Ge W, Li FH, An MZ (2015) Deciphering the formation mechanism of a protective corrosion product layer from electrochemical and natural corrosion behaviors of a nanocrystalline zinc coating. RSC Adv 5(41):32479–32490. https://doi.org/10.1039/C5RA02777B

    CAS  Article  Google Scholar 

  12. 12.

    Li QY, Feng ZB, Liu LH, Sun J, Qu YT, Li FH, An MZ (2015) Research on the tribological behavior of a nanocrystalline zinc coating prepared by pulse reverse electrodeposition. RSC Adv 5(16):12025–12033. https://doi.org/10.1039/C4RA13691H

    CAS  Article  Google Scholar 

  13. 13.

    Youssef KM, Koch CC, Fedkiw PS (2004) Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corros Sci 46(1):51–64. https://doi.org/10.1016/S0010-938X(03)00142-2

    CAS  Article  Google Scholar 

  14. 14.

    Li MC, Jiang LL, Zhang WQ, Qian YH, Luo SZ, Shen JN (2007) Electrochemical corrosion behavior of nanocrystalline zinc coatings in 3.5% NaCl solutions. J Solid State Electrochem 11(9):1319–1325. https://doi.org/10.1007/s10008-007-0293-5

    CAS  Article  Google Scholar 

  15. 15.

    Ramanauskas R, Gudavičiūtė L, Juškėnas R, Ščit O (2007) Structural and corrosion characterization of pulse plated nanocrystalline zinc coatings. Electrochim Acta 53(4):1801–1810. https://doi.org/10.1016/j.electacta.2007.08.036

    CAS  Article  Google Scholar 

  16. 16.

    Li QY, Ge W, Yang PX, Zhang JQ, An MZ (2016) Insight into the role and its mechanism of polyacrylamide as an additive in sulfate electrolytes for nanocrystalline zinc electrodeposition. J Electrochem Soc 163(5):D127–D132. https://doi.org/10.1149/2.0531605jes

    CAS  Article  Google Scholar 

  17. 17.

    Mouanga M, Ricq L, Douglade J, Berçot P (2007) Effects of some additives on the corrosion behaviour and preferred orientations of zinc obtained by continuous current deposition. J Appl Electrochem 37(2):283–289. https://doi.org/10.1007/s10800-006-9255-3

    CAS  Article  Google Scholar 

  18. 18.

    De la Fuente D, Castano JG, Morcillo M (2007) Long-term atmospheric corrosion of zinc. Corros Sci 49(3):1420–1436. https://doi.org/10.1016/j.corsci.2006.08.003

    Article  Google Scholar 

  19. 19.

    Yoo JD, Ogle K, Volovitch P (2014) The effect of synthetic zinc corrosion products on corrosion of electrogalvanized steel: I. Cathodic reactivity under zinc corrosion products. Corros Sci 81:11–20. https://doi.org/10.1016/j.corsci.2013.11.045

    CAS  Article  Google Scholar 

  20. 20.

    Sithole J, Ngom BD, Khamlich S, Manikanadan E, Manyala N, Saboungi ML, Knoessen D, Nemutudi R, Maaza M (2012) Appl Surf Sci 258(20):7839–7843. https://doi.org/10.1016/j.apsusc.2012.04.073

    CAS  Article  Google Scholar 

  21. 21.

    Muralidhara HB, Balasubramanyam J, Naik YA, Kumar KY, Hanumanthappa H, Veena MS (2011) Chem. Pharm Res 3:433–449

    CAS  Google Scholar 

  22. 22.

    Muralidhara HB, Naik YA (2008) Electrochemical deposition of nanocrystalline zinc on steel substrate from acid zincate bath. Surf Coat Technol 202(14):3403–3412. https://doi.org/10.1016/j.surfcoat.2007.12.012

    CAS  Article  Google Scholar 

  23. 23.

    Oernek C, Engelberg DL (2016) Correlative EBSD and SKPFM characterisation of microstructure development to assist determination of corrosion propensity in grade 2205 duplex stainless steel. J Mater Sci 51(4):1931–1948. https://doi.org/10.1007/s10853-015-9501-3

    Article  Google Scholar 

  24. 24.

    Li W, Li DY (2006) Influence of surface morphology on corrosion and electronic behavior. Acta Mater 54(2):445–452. https://doi.org/10.1016/j.actamat.2005.09.017

    CAS  Article  Google Scholar 

  25. 25.

    Yang ZR, Lu H, Liu ZR, Yan XG, Li DY (2016) Effect of particle size on the surface activity of TiC–Ni composite coating via the interfacial valence electron localization. RSC Adv 6(23):18793–18799. https://doi.org/10.1039/C5RA24371H

    CAS  Article  Google Scholar 

  26. 26.

    Mosleh-Shirazi S, Hua GM, Akhlaghi F, Yan XG, Li DY (2015) Sci Rep 5:18154

    CAS  Article  Google Scholar 

  27. 27.

    Bockris JO'M, Khan SUM (1993) Surface electrochemistry: a molecular level approach. Springer, New York, DOI: https://doi.org/10.1007/978-1-4615-3040-4

  28. 28.

    Huang XC, Lu H, Li DY (2016) Understanding the corrosion behavior of isomorphous Cu–Ni alloy from its electron work function. Mater Chem Phys 173:238–245. https://doi.org/10.1016/j.matchemphys.2016.02.009

    CAS  Article  Google Scholar 

  29. 29.

    Rohwerder M, Turcu F (2007) High-resolution Kelvin probe microscopy in corrosion science: scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP). Electrochim Acta 53(2):290–299. https://doi.org/10.1016/j.electacta.2007.03.016

    CAS  Article  Google Scholar 

  30. 30.

    Iannuzzi M, Vasanth KL, Frankel GS (2017) Unusual correlation between SKPFM and corrosion of nickel aluminum bronzes. J Electrochem Soc 164(9):C488–C497. https://doi.org/10.1149/2.0391709jes

    CAS  Article  Google Scholar 

  31. 31.

    Muster TH, Cole IS (2004) The protective nature of passivation films on zinc: surface charge. Corros Sci 46(9):2319–2335. https://doi.org/10.1016/j.corsci.2004.01.002

    CAS  Article  Google Scholar 

Download references


The authors are grateful for the financial support from the Natural Science and Engineering Research Council of Canada, Camber Technology Co., Suncor Energy Inc., Shell Canada Ltd., Magna International Inc., and Volant Products Inc.

Author information



Corresponding authors

Correspondence to Qingyang Li or D. Y. Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Lu, H., Cui, J. et al. Elevate the corrosion potential of Zn coatings using ceramic nanoparticles. J Solid State Electrochem 22, 1949–1955 (2018). https://doi.org/10.1007/s10008-018-3878-2

Download citation


  • Nano-scale phase
  • Nanocomposite coating
  • Corrosion potential
  • Work function