Journal of Solid State Electrochemistry

, Volume 22, Issue 6, pp 1949–1955 | Cite as

Elevate the corrosion potential of Zn coatings using ceramic nanoparticles

  • Qingyang LiEmail author
  • Hao Lu
  • Juan Cui
  • Maozhong An
  • D. Y. LiEmail author
Short Communication


It was observed that adding TiC nanoparticles (NPs) to zinc coating increased its corrosion resistance. To understand the beneficial role of TiC nanoparticles in suppressing corrosion, we studied the electrochemical behavior of TiC NP-added nanocomposite zinc coating, in comparison with those of coarse-grained and nanocrystalline zinc coatings, in simulated seawater. The surface electrochemical stability and surface electron stability, which are respectively reflected by corrosion potential and electron work function (EWF), were investigated. It is demonstrated that the increased corrosion resistance of nanocomposite zinc coating is ascribed to the fact that the TiC nanoparticles raise surface electron work function of the coating, corresponding to elevated surface electron stability.


Nano-scale phase Nanocomposite coating Corrosion potential Work function 


Funding information

The authors are grateful for the financial support from the Natural Science and Engineering Research Council of Canada, Camber Technology Co., Suncor Energy Inc., Shell Canada Ltd., Magna International Inc., and Volant Products Inc.


  1. 1.
    Magalhães AAO, Margarit ICP, Mattos OR (1999) Electrochemical characterization of chromate coatings on galvanized steel. Electrochim Acta 44(24):4281–4287. CrossRefGoogle Scholar
  2. 2.
    Cho KW, Rao VS, Kwon HS (2007) Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc. Electrochim Acta 52(13):4449–4456. CrossRefGoogle Scholar
  3. 3.
    Thomas S, Cole IS, Sridhar M, Birbilis N (2013) Revisiting zinc passivation in alkaline solutions. Electrochim Acta 97:192–201. CrossRefGoogle Scholar
  4. 4.
    Apte AD, Tare V, Bose P (2006) Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. J Hazard Mater 128(2-3):164–174. CrossRefGoogle Scholar
  5. 5.
    Kong G, Lu JT, Zhang SH, Che CS, Wu HJ (2010) A comparative study of molybdate/silane composite films on galvanized steel with different treatment processes. Surf Coat Technol 205(2):545–550. CrossRefGoogle Scholar
  6. 6.
    Tsai CY, Liu JS, Chen PL, Lin CS (2010) A two-step roll coating phosphate/molybdate passivation treatment for hot-dip galvanized steel sheet. Corros Sci 52(10):3385–3393. CrossRefGoogle Scholar
  7. 7.
    Sahu SC, Samantara AK, Seth M, Parwaiz S, Singh BP, Rath PC, Jena BK (2013) A facile electrochemical approach for development of highly corrosion protective coatings using graphene nanosheets. Electrochem Commun 32:22–26. CrossRefGoogle Scholar
  8. 8.
    Lin TH, Huang WH, Jun IK, Jiang P (2009) Electrophoretic co-deposition of biomimetic nanoplatelet–polyelectrolyte composites. Electrochem Commun 11(8):1635–1638. CrossRefGoogle Scholar
  9. 9.
    Hashemi M, Mirdamadi S, Rezaie HR (2014) Effect of SiC nanoparticles on microstructure and wear behavior of Cu-Ni-W nanocrystalline coating. Electrochim Acta 138:224–231. CrossRefGoogle Scholar
  10. 10.
    Liu L, Li Y, Wang FH (2008) Influence of grain size on the corrosion behavior of a Ni-based superalloy nanocrystalline coating in NaCl acidic solution. Electrochim Acta 53(5):2453–2462. CrossRefGoogle Scholar
  11. 11.
    Li QY, Feng ZB, Liu LH, Xu H, Ge W, Li FH, An MZ (2015) Deciphering the formation mechanism of a protective corrosion product layer from electrochemical and natural corrosion behaviors of a nanocrystalline zinc coating. RSC Adv 5(41):32479–32490. CrossRefGoogle Scholar
  12. 12.
    Li QY, Feng ZB, Liu LH, Sun J, Qu YT, Li FH, An MZ (2015) Research on the tribological behavior of a nanocrystalline zinc coating prepared by pulse reverse electrodeposition. RSC Adv 5(16):12025–12033. CrossRefGoogle Scholar
  13. 13.
    Youssef KM, Koch CC, Fedkiw PS (2004) Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corros Sci 46(1):51–64. CrossRefGoogle Scholar
  14. 14.
    Li MC, Jiang LL, Zhang WQ, Qian YH, Luo SZ, Shen JN (2007) Electrochemical corrosion behavior of nanocrystalline zinc coatings in 3.5% NaCl solutions. J Solid State Electrochem 11(9):1319–1325. CrossRefGoogle Scholar
  15. 15.
    Ramanauskas R, Gudavičiūtė L, Juškėnas R, Ščit O (2007) Structural and corrosion characterization of pulse plated nanocrystalline zinc coatings. Electrochim Acta 53(4):1801–1810. CrossRefGoogle Scholar
  16. 16.
    Li QY, Ge W, Yang PX, Zhang JQ, An MZ (2016) Insight into the role and its mechanism of polyacrylamide as an additive in sulfate electrolytes for nanocrystalline zinc electrodeposition. J Electrochem Soc 163(5):D127–D132. CrossRefGoogle Scholar
  17. 17.
    Mouanga M, Ricq L, Douglade J, Berçot P (2007) Effects of some additives on the corrosion behaviour and preferred orientations of zinc obtained by continuous current deposition. J Appl Electrochem 37(2):283–289. CrossRefGoogle Scholar
  18. 18.
    De la Fuente D, Castano JG, Morcillo M (2007) Long-term atmospheric corrosion of zinc. Corros Sci 49(3):1420–1436. CrossRefGoogle Scholar
  19. 19.
    Yoo JD, Ogle K, Volovitch P (2014) The effect of synthetic zinc corrosion products on corrosion of electrogalvanized steel: I. Cathodic reactivity under zinc corrosion products. Corros Sci 81:11–20. CrossRefGoogle Scholar
  20. 20.
    Sithole J, Ngom BD, Khamlich S, Manikanadan E, Manyala N, Saboungi ML, Knoessen D, Nemutudi R, Maaza M (2012) Appl Surf Sci 258(20):7839–7843. CrossRefGoogle Scholar
  21. 21.
    Muralidhara HB, Balasubramanyam J, Naik YA, Kumar KY, Hanumanthappa H, Veena MS (2011) Chem. Pharm Res 3:433–449Google Scholar
  22. 22.
    Muralidhara HB, Naik YA (2008) Electrochemical deposition of nanocrystalline zinc on steel substrate from acid zincate bath. Surf Coat Technol 202(14):3403–3412. CrossRefGoogle Scholar
  23. 23.
    Oernek C, Engelberg DL (2016) Correlative EBSD and SKPFM characterisation of microstructure development to assist determination of corrosion propensity in grade 2205 duplex stainless steel. J Mater Sci 51(4):1931–1948. CrossRefGoogle Scholar
  24. 24.
    Li W, Li DY (2006) Influence of surface morphology on corrosion and electronic behavior. Acta Mater 54(2):445–452. CrossRefGoogle Scholar
  25. 25.
    Yang ZR, Lu H, Liu ZR, Yan XG, Li DY (2016) Effect of particle size on the surface activity of TiC–Ni composite coating via the interfacial valence electron localization. RSC Adv 6(23):18793–18799. CrossRefGoogle Scholar
  26. 26.
    Mosleh-Shirazi S, Hua GM, Akhlaghi F, Yan XG, Li DY (2015) Sci Rep 5:18154CrossRefGoogle Scholar
  27. 27.
    Bockris JO'M, Khan SUM (1993) Surface electrochemistry: a molecular level approach. Springer, New York, DOI:
  28. 28.
    Huang XC, Lu H, Li DY (2016) Understanding the corrosion behavior of isomorphous Cu–Ni alloy from its electron work function. Mater Chem Phys 173:238–245. CrossRefGoogle Scholar
  29. 29.
    Rohwerder M, Turcu F (2007) High-resolution Kelvin probe microscopy in corrosion science: scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP). Electrochim Acta 53(2):290–299. CrossRefGoogle Scholar
  30. 30.
    Iannuzzi M, Vasanth KL, Frankel GS (2017) Unusual correlation between SKPFM and corrosion of nickel aluminum bronzes. J Electrochem Soc 164(9):C488–C497. CrossRefGoogle Scholar
  31. 31.
    Muster TH, Cole IS (2004) The protective nature of passivation films on zinc: surface charge. Corros Sci 46(9):2319–2335. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Advanced Wear and Corrosion Resistant and Functional MaterialsJinan UniversityGuangzhouChina
  2. 2.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.School of Chemical Engineering and TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations