Highly sensitive determination of salicylic acid in skin care product by means of carbon nanotube/iron oxide nanoparticle voltammetric sensors


The present work reports the performance and the mechanism of detection of a voltammetric sensor for salicylic acid (SA) in a skin care product employing a carbon nanotube/iron oxide nanoparticle (SWCNT/ION) modified electrode. The coupling between Fe(III) → Fe(II) and SA → SA (radical) half-cell reactions at the surface of SWCNT/ION and the enlarged surface area are harnessed to enhance the sensor’s sensitivity. By means of differential pulse voltammetry under optimized conditions, the performance of the (SWCNT/ION) provided the following figure of merit: two linear working ranges 0.6–2.9 μmol/L (r2 = 0.996) and 2.9–46.3 μmol/L (r2 = 0.995), sensitivity 0.64 μA cm−2/μmol L−1, limit of detection (LOD) (3Sb/b) 0.02 μmol/L, and limit of quantification (10Sb/b) 0.07 μmol/L. The LOD is lower than most of the electroanalytical methodologies found in the literature. The determination of SA in a skin care product shows no difference, at 95% confidence level (Student’s t test), to that performed with HPLC/UV-Vis. Moreover, a single modified electrode can be used for at least 18 consecutive runs while losing less than 10% of its sensitivity. The sensitivity difference between electrodes made in different batches is only 5.4%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Duthie GG, Wood AD (2011) Natural salicylates: foods, functions and disease prevention. Food Funct 2(9):515–520

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Pulgarín JAM, Molina AA, Robles IS (2011) Simultaneous determination of salicylic acid and salicylamide in biological fluids. Spectrochim Acta A 79(5):909–914

    Article  CAS  Google Scholar 

  3. 3.

    Chocholouš P, Holík P, Šatínský D, Solich P (2007) A novel application of onyx™ monolithic column for simultaneous determination of salicylic acid and triamcinolone acetonide by sequential injection chromatography. Talanta 72(2):854–858

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Madan RK, Levitt J (2014) A review of toxicity from topical salicylic acid preparations. J Am Dermatol 70(4):788–792

    CAS  Article  Google Scholar 

  5. 5.

    Youssef RM, Korany MA, Afify MA (2014) Development of a stability indicating HPLC-DAD method for the simultaneous determination of mometsone furoate and salicylic acid in an ointment matrix. Anal Methods 6(10):3410–3419

    CAS  Article  Google Scholar 

  6. 6.

    Ruiz-Medina A, Cordóva MLF, Ortega-Barrales P, Molina-Díaz A (2001) Flow-through UV spectrophotometric sensor for determination of (acetyl)salicylic acid in pharmaceutical preparations. Int J Pharm 216(1-2):95–104

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Eksi-Kocak H, Tamer SI, Yilmaz S, Eryilmaz M, Boyaci IH, Tamer U (2018) Quantification and spatial distribution of salicylic acid in film tablets using FT-Raman mapping with multivariate curve resolution. Asian J Pharm Sci 13(2):155–162

    Article  Google Scholar 

  8. 8.

    Huang Z, Wang Z, Shi B, Wei D, Chen J, Wang S, Gao B (2015) Simultaneous determination of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate from Ulmus pumila leaves by GC-MS. Int J Anal Chem 2015:1–7

    Google Scholar 

  9. 9.

    Silva GS, Lima DLD, Esteves VI (2017) Salicylic acid determination in estuarine and riverine waters using hollow fiber liquid-phase microextraction and capillary zone electrophoresis. Environ Sci Pollut Res 24(18):15748–15755

    Article  CAS  Google Scholar 

  10. 10.

    Sivula K, Formal FL, Grätzel M (2011) Solar water splitting : Progress using hematite (α-Fe2 O3) Photoelectrodes. ChemSusChem 4(4):432–449

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Wang D, Li Y, Wang Q, Wang T (2012) Nanostructured Fe2O3 – graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem 16(6):2095–2102

    CAS  Article  Google Scholar 

  12. 12.

    Yin H, Zhou Y, Liu T, Tang T, Ai S, Zhu L (2012) Determination aminopyrine in pharmaceutical formulations based on APTS-Fe3O4 nanoparticles modified glassy carbon electrode. J Solid State Electrochem 16(2):731–738

    CAS  Article  Google Scholar 

  13. 13.

    Chumming J, Xiangqin L (2009) Electrochemical synthesis of Fe3O4-PB nanoparticles with core-shell structure and its electrocatalytic reduction toward H2O2. J Solid State Electrochem 13(8):1273–1278

    Article  CAS  Google Scholar 

  14. 14.

    Hu Y, Zhang Z, Zhang H, Luo L, Yao S (2012) Selective and sensitive molecularly imprinted sol–gel film-based electrochemical sensor combining mercaptoacetic acid-modified PbS nanoparticles with Fe3O4 @ au–multi-walled carbon nanotubes–chitosan. J Solid State Electrochem 16(3):857–867

    CAS  Article  Google Scholar 

  15. 15.

    Alizadeh T, Jamshidi F (2015) Synthesis of nanosized sulfate-modified α-Fe2O3 and its use for the fabrication of all-solid-state carbon paste pH sensor. J Solid State Electrochem 19(4):1053–1062

    CAS  Article  Google Scholar 

  16. 16.

    Ramos JA, Fernandes EGR, Zucolotto V (2015) A peroxidase biomimetic system based on Fe3O4 nanoparticles in non-enzymatic sensors. Talanta 141:307–314

    Article  CAS  Google Scholar 

  17. 17.

    Wang Y, Zhang H, Yao D, Pu J, Zhang Y, Gao X, Sun Y (2013) Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide. J Solid State Electrochem 7:881–887

    Article  CAS  Google Scholar 

  18. 18.

    Yang S, Li G, Wang G, Deng D, Qu L (2015) A novel electrochemical sensor based on Fe2O3 nanoparticles/N-doped graphene for electrocatalytic oxidation of L-cysteine. J Solid State Electrochem 19(12):3613–3620

    CAS  Article  Google Scholar 

  19. 19.

    Wang X, You Z, Sha H, Sun Z, Sun W (2014) Electrochemical myoglobin biosensor based on carbon ionic liquid electrode modified with Fe3O4@SiO2 microsphere. J Solid State Electrochem 18(1):207–213

    CAS  Article  Google Scholar 

  20. 20.

    Zhang W, Wang L, Zheng X (2014) Indicator-free electrochemical genosensing originated from the self-signal of poly-xanthurenic acid enhanced by Fe3O4/reduced graphene oxide. J Solid State Electrochem 18(9):2367–2373

    CAS  Article  Google Scholar 

  21. 21.

    Mahendran V, Philip J (2013) Sensing of biologically important cations such as Na+, K+, Ca2+, Cu2+, and Fe3+ using magnetic nanoemulsions. Langmuir 29(13):4252–4258

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Zhao G, Xu JJ, Chen HY (2006) Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin. Electrochem Commun 8(1):148–154

    CAS  Article  Google Scholar 

  23. 23.

    Belle CJ, Bonamin A, Simon U, Santoyo-Salazar J, Pauly M, Bégin-Colin S, Pourroy G (2011) Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sensors Actuators B 160(1):942–950

    CAS  Article  Google Scholar 

  24. 24.

    Singh V, Kaul S, Singla P, Kumar V, Sandhir R, Chung JH, Garg P, Singhal NK (2018) Xylanase immobilization on magnetite and magnetite core/shell nanocomposites using two different flexible alkyl length organophosphonates: linker length and shell effect on enzyme catalytic activity. Int J Biol Macromol 115:590–599

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Oliveira TR, Martucci DH, Faria RC (2018) Simple disposable microfluidic device for Salmonella typhimurium detection by magneto-immunoassay. Sensors Actuators B 255:684–691

    Article  CAS  Google Scholar 

  26. 26.

    Costa MP, Andrade CAS, Montenegro RA, Melo FL, Oliveira MDL (2014) Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. J Colloid Interface Sci 433:141–148

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5):2016–2022

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S, Malhotra BD (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sensors Actuators B 138(2):572–580

    CAS  Article  Google Scholar 

  29. 29.

    Santos JGM, Souza JR, Letti CJ, Soler MAG, Morais PC, Pereira-da-Silva MA, Paterno LG (2014) Iron oxide nanostructured electrodes for detection of copper ( II ) ions. J Nanosci Nanotechnol 14(9):6614–6623

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Adekunle AS, Agboola BO, Pillay J, Ozoemena KI (2010) Chemical Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron ( III ) oxide nanoparticles platform. Sensors Actuators B 148(1):93–102

    CAS  Article  Google Scholar 

  31. 31.

    Sun L, Feng Q, Yan Y, Pan Z, Li X, Song F, Yang H, Xu J, Bao N, Gu H (2014) Paper-based electroanalytical devices for in situ determination of salicylic acid in living tomato leaves. Biosens Bioelectron 60:154–160

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Zhang W, Xu B, Hong Y, Yu Y, Ye J, Zhang J (2010) Electrochemical oxidation of salicylic acid at well-aligned multiwalled carbon nanotube electrode and its detection. J Solid State Electrochem 14(9):1713–1718

    CAS  Article  Google Scholar 

  33. 33.

    Lu S, Bai L, Wen Y, Li M, Yan D, Zhang R, Chen K (2015) Water-dispersed carboxymethyl cellulose-montmorillonite-single walled carbon nanotube composite with enhanced sensing performance for simultaneous voltammetric determination of two trace phytohormones. J Solid State Electrochem 19(7):2023–2037

    CAS  Article  Google Scholar 

  34. 34.

    Ribeiro CL, Santos JGM, Souza JR, Pereira-da-Silva MA, Paterno LG (2017) Electrochemical oxidation of salicylic acid at ITO substrates modified with layer-by-layer films of carbon nanotubes and iron oxide nanoparticles. J Electroanal Chem 805:53–59

    CAS  Article  Google Scholar 

  35. 35.

    Lobo RFM, Pereira da Silva MA, Raposo M, Faria RM, ONJr O (1999) In situ thickness measurements of ultra-thin multilayer polymer films by atomic force microscopy. Nanotechnology 10(4):389–393

    CAS  Article  Google Scholar 

  36. 36.

    Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8(9):2209–2211

    CAS  Article  Google Scholar 

  37. 37.

    Cornell RM, Schwertmann U (2003) The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. Wiley-VCH, Germany

    Google Scholar 

  38. 38.

    Torriero AAJ, Luco JM, Sereno L, Raba J (2004) Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid. Talanta 62:247–254

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Park J, Eun C (2016) Electrochemical behavior and determination of salicylic acid at carbon-fiber electrodes. Electrochim Acta 194:346–356

    CAS  Article  Google Scholar 

  40. 40.

    Chrzescijanska E, Wudarska E, Kusmierek E, Rynkowski J (2014) Study of acetylsalicylic acid electroreduction behavior at platinum electrode. J Electroanal Chem 713:17–21

    CAS  Article  Google Scholar 

  41. 41.

    Wang C, Shen M, Ding Y, Zhao D, Cui S, Li L (2017) Facile preparation of multilayer ultrathin films based on eriochrome black T/NiAl-layered double hydroxide nanosheet, characterization and application in amperometric detection of salicylic acid. J Electroanal Chem 785:131–137

    CAS  Article  Google Scholar 

  42. 42.

    Pletcher D, Greff R, Peat R, Peter LM, Robinson J (2010) Instrumental methods in electrochemistry. Woodhead Publishing, Cambridge

    Google Scholar 

  43. 43.

    ICH Topic Q2 (R1) (2005) Validation of analytical procedures: text and methodology. Int Conf Harmon 1994(2005):17

    Google Scholar 

  44. 44.

    Fisher FA, Yates F (1938) Statistical tables for biological, agricultural and medical research. Longman Group Ltd, Oxford

    Google Scholar 

  45. 45.

    Doulache M, Benchettara A, Trari M (2014) Detection of salicylic acid by electrocatalytic oxidation at a nickel-modified glassy carbon electrode. J Anal Chem 69(1):51–56

    CAS  Article  Google Scholar 

  46. 46.

    Sun L, Pan Z, Xie J, Liu X, Sun F, Song F, Bao N, Gu H (2013) Electrocatalytic activity of salicylic acid on au@Fe3O4 nanocomposites modified electrode and its detection in tomato leaves infected with Botrytis cinereal. J Electroanal Chem 706:127–132

    CAS  Article  Google Scholar 

  47. 47.

    Ghoreishi SM, Kashani FZ, Khoobi A, Enhessari M (2015) Fabrication of a nickel titanate nanoceramic modified electrode for electrochemical studies and detection of salicylic acid. J Mol Liq 211:970–980

    CAS  Article  Google Scholar 

  48. 48.

    Lu L, Zhu X, Qiu X, He H, Xu J, Wang X (2014) Graphene oxide/multiwalled carbon nanotubes composites as an enhanced sensing platform for voltammetric determination of salicylic acid. Int J Electrochem Sci 9:8057–8066

    CAS  Google Scholar 

  49. 49.

    Alizadeh T, Nayeri S (2018) Electrocatalytic oxidation of salicylic acid at a carbon paste electrode impregnated with cerium-doped zirconium oxide nanoparticles as a new sensing approach for salicylic acid determination. J Solid State Electrochem 22(7):2039–2048

    CAS  Article  Google Scholar 

  50. 50.

    Rawlinson S, McLister A, Kanyong P, Davis J (2018) Rapid determination of salicylic acid at screen printed electrodes. Microchem J 137:71–77

    CAS  Article  Google Scholar 

  51. 51.

    Ganjali MR, Nejad FG, Tajik S, Beitollahi H, Pourbasheer E, Larijanii B (2017) Determination of salicylic acid by differential pulse voltammetry using ZnO/Al2O3 nanocomposite modified graphite screen printed electrode. Int J Electrochem Sci 12:9972–9982

    CAS  Article  Google Scholar 

  52. 52.

    Zhao C, Lin J (2017) Electrochemically reduced graphene oxide modified screen- printed electrodes for sensitive determination of acetylsalicylic acid. Int J Electrochem Sci 12:10177–10186

    CAS  Article  Google Scholar 

  53. 53.

    Derikvand H, Azadbakht A (2017) An impedimetric sensor comprising magnetic nanoparticles-graphene oxide and carbon nanotube for the electrocatalytic oxidation of salicylic acid. J Inorg Organomet Polym 27(4):901–911

    CAS  Article  Google Scholar 

  54. 54.

    Sivakumar M, Sakthivel M, Chen S, Veerakumar P, Liu S (2017) Sol-gel synthesis of carbon-coated LaCoO3 for effective electrocatalytic oxidation of salicylic acid. ChemElectroChem 4(4):935–940

    CAS  Article  Google Scholar 

Download references


The authors thank the support of Dr. Marcelo A. Pereira-da-Silva (IFSC-USP) with atomic force microscopy and Professor Maria A. G. Soler (IF-UnB) with Raman spectroscopy.


Financial support was given by Brazilian funding agencies CNPq and FAP-DF (process no. 0193.000829/2015) and FINEP (process no. 01/13/0470/00). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information



Corresponding author

Correspondence to Leonardo G. Paterno.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 235 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, C.L., Santos, J.G.M., Souza, J.R. et al. Highly sensitive determination of salicylic acid in skin care product by means of carbon nanotube/iron oxide nanoparticle voltammetric sensors. J Solid State Electrochem 23, 783–793 (2019). https://doi.org/10.1007/s10008-018-04189-y

Download citation


  • Salicylic acid
  • Skin care product
  • Electroanalytical method
  • Carbon nanotubes
  • Iron oxide nanoparticles
  • Layer-by-layer