Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 3, pp 871–881 | Cite as

Accelerated degradation of yttria stabilized zirconia electrolyte during high-temperature water electrolysis

  • Aziz NechacheEmail author
  • Bernard A. Boukamp
  • Michel Cassir
  • Armelle RinguedéEmail author
Original Paper
  • 127 Downloads

Abstract

The accelerated degradation of a commercial LSCF/YDC/YSZ/Ni-YSZ solid oxide electrolyzer cell (La0.6Sr0.4Co0.2Fe0.8O3-δ/Y0.1CeO1.95/Y0.08Zr0.92O1.96/Ni-YSZ) contaminated by Si-containing impurities is studied with time under up to − 1.7 A cm−2 applied. Above ~ − 0.6 A cm−2, a new region appears in the polarization curve. This region corresponds to electronic conduction in the yttria-stabilized zirconia (YSZ) electrolyte, induced by the reduction under high current conditions. A shift in the typical frequencies (relaxation times) toward lower frequencies is then observed for the entire impedance spectra. This shift results finally in the disappearance of the positive loop related to the polarization resistance and the appearance of a negative (inductance type) loop which crosses the real axis (Z’) at the lowest frequencies to become positive again. This is characteristic for an electrode process mode in which the electrochemical redox reactions vanish while the cell current becomes mainly electronic due to the reduction of the YSZ electrolyte. This trend increases with time. Such a characterization of the electronic conduction of the YSZ electrolyte by electrochemical impedance spectroscopy has not been reported to date under electrolysis mode, to the best of our knowledge. Post-mortem analysis by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX) shows detrimental degradation of the electrolyte after only 360 h of overall testing duration with numerous micropores in the YSZ volume, and cracks and delamination at the yttria-doped ceria (YDC)/YSZ interface. EDX analysis reveals (i) a migration of La, Sr, Co, and Fe elements from lanthanum strontium cobalt ferrite (LSCF) anode to YDC layer and YSZ electrolyte and (ii) a very important shift of Ni from Ni-YSZ cathode to YSZ and YDC, and also to LSCF anode in a lower proportion. This study highlights the critical issue that impurities represent for solid oxide electrolysis cell operation.

Keywords

Hydrogen Solid oxide electrolysis cell Electrochemical impedance spectroscopy Degradation Yttria stabilized zirconia Electrolyte electronic conduction 

Notes

Acknowledgements

Dr. Nechache would like to warmly acknowledge Dr. Guillaume Izzet for the very helpful discussions.

Funding information

This work is supported by the French Research National Agency (ANR) through Hydrogène et piles à combustible program (project FIDELHYO no. ANR-09-HPAC-005).

References

  1. 1.
    Goltsov VA, Veziroglu TN (2001) Int J Hydrog Energy 26(9):909–915CrossRefGoogle Scholar
  2. 2.
    Rosen MA, Scott DS (1998) Int J Hydrog Energy 23(8):653–659CrossRefGoogle Scholar
  3. 3.
    Nechache A, Cassir M, Ringuedé A (2014) J Power Sources 258:164–181Google Scholar
  4. 4.
    Nechache A, Boukamp BA, Cassir M, Ringuedé A (2018) J Solid State Electrochem. First Online  https://doi.org/10.1007/s10008-018-4116-7
  5. 5.
    Kharton VV (ed) (2009) Solid state electrochemistry I: fundamentals, materials and their applications. Wiley, WeinheimGoogle Scholar
  6. 6.
    Durov AV, Naidich YV, Kostyuk BD (2005) J Mater Sci 40(9-10):2173–2178CrossRefGoogle Scholar
  7. 7.
    Warner TE, Janes R, Edwards PP (1991) J Mater Sci Lett 10(16):937–938CrossRefGoogle Scholar
  8. 8.
    Weininger JL, Zemany PD (1954) J Chem Phys 22(8):1469–1470CrossRefGoogle Scholar
  9. 9.
    Jacquin M, Guillou M, Millet J (1967) CR Acad Sci 264:2101Google Scholar
  10. 10.
    Etsell TH, Flengas SN (1971) J Electrochem Soc 118(12):1890–1900CrossRefGoogle Scholar
  11. 11.
    Brook RJ, Pelzmann WL, Kroger FA (1971) J Electrochem Soc 118(2):185–192CrossRefGoogle Scholar
  12. 12.
    Perfilev MV, Palguev SF (1967) Electrochem Molten Solid Electrolytes 4:147Google Scholar
  13. 13.
    Bauerle JE (1969) J Phys Chem Solids 30(12):2657–2670CrossRefGoogle Scholar
  14. 14.
    Karpachev SV, Ovchinnikov YM (1969) Soy Electrochem 5:181Google Scholar
  15. 15.
    Kleitz M. (1968) Thesis, Grenoble UniversityGoogle Scholar
  16. 16.
    Yanagida H, Brook RJ, Kroger FA (1970) J Electrochem Soc 117(5):593–602CrossRefGoogle Scholar
  17. 17.
    Tedmon CS, Spacil HS, Mitoff SP (1969) J Electrochem Soc 116(9):1170–1175CrossRefGoogle Scholar
  18. 18.
    Gokhshstein YP, Safonov AA (1970) High Temp 8:368Google Scholar
  19. 19.
    Casselton REW (1974) J Appl Electrochem 4(1):25–48CrossRefGoogle Scholar
  20. 20.
    Fabry P., Kleitz M. (1976) in: M. Kleitz, J. Dupuy (Eds.), Electrode processes in solid state ionics, Reidel Publ. Comp., Dordrecht, pp. 331–365Google Scholar
  21. 21.
    Janek J, Korte C (1999) Solid State Ionics 116(3-4):181–195CrossRefGoogle Scholar
  22. 22.
    Boulfrad S, Djurado E, Fouletier J (2009) Solid State Ionics 180(14-16):978–983CrossRefGoogle Scholar
  23. 23.
    Knibbe RML, Traulsen MLA, Hauch ASD, Ebbesen SDM, Mogensen M (2010) J Electrochem Soc 157(8):B1209–B1217CrossRefGoogle Scholar
  24. 24.
    Laguna-Bercero MA, Campana R, Larrea A, Kilner JA, Orera VM (2011) J Power Sources 196(21):8942–8947CrossRefGoogle Scholar
  25. 25.
    Kim J, Ji H, Dasari HP, Shin D, Song H, Lee JH, Kim BK, Je HJ, Lee HW, Yoon KJ (2013) Int J Hydrog Energy 38(3):1225–1235CrossRefGoogle Scholar
  26. 26.
    Chen M, Liu YL, Bentzen JJ, Zhang W, Sun X, Hauch A, Tao Y, Bowen JR, Hendriksen PV (2013) J Electrochem Soc 160(8):F883–F891CrossRefGoogle Scholar
  27. 27.
    Sun X, Chen M, Hjalmarsson P, Ebbesen SD, Jensen SH, Mogensen M, Hendriksen PV (2012) ECS Trans 41:77–85CrossRefGoogle Scholar
  28. 28.
    Barfod R, Mogensen M, Klemenso T, Hagen A, Liu YL, Hendriksen PV (2007) J Electrochem Soc 154(4):B371–B378CrossRefGoogle Scholar
  29. 29.
    Primdahl S, Mogensen M (1998) J Electrochem Soc 145(7):2431–2438CrossRefGoogle Scholar
  30. 30.
    Primdahl S, Mogensen M (1999) J Electrochem Soc 146(8):2827–2833CrossRefGoogle Scholar
  31. 31.
    Jørgensen MJ, Mogensen M (2001) J Electrochem Soc 148(5):A433–A442CrossRefGoogle Scholar
  32. 32.
    Primdahl S (1999) Risø National Laboratory. DTU, Roskilde, DenmarkGoogle Scholar
  33. 33.
    Schefold J, Brisse A, Tietz F (2012) J Electrochem Soc 159:A137–A144CrossRefGoogle Scholar
  34. 34.
    Nechache A, Mansuy A, Petitjean M, Mougin J, Mauvy F, Boukamp BA, Cassir M, Ringuedé A (2016) Electrochim Acta 210:596–605CrossRefGoogle Scholar
  35. 35.
    Leonide A, Sonn V, Weber A, Ivers-Tiffée E (2008) J Electrochem Soc 155(1):B36–B41CrossRefGoogle Scholar
  36. 36.
    Kournoutis VC, Tietz F, Bebelis S (2009) Fuel Cells 09(6):852–860CrossRefGoogle Scholar
  37. 37.
    Ivers-Tiffée E, Weber A (2017) J Ceram Soc Japan 125(4):193–201CrossRefGoogle Scholar
  38. 38.
    Tietz F, Sebold D, Brisse A, Schefold J (2013) J Power Sources 223:129–135CrossRefGoogle Scholar
  39. 39.
    Schefold J, Brisse A, Poepke H (2017) Int J Hydrog Energy 42(19):13415–13426CrossRefGoogle Scholar
  40. 40.
    Laguna-Bercero MA (2012) J Power Sources 203:4–16CrossRefGoogle Scholar
  41. 41.
    Moçoteguy P, Brisse A (2013) Int J Hydrog Energy 38(36):15887–15902CrossRefGoogle Scholar
  42. 42.
    Ebbesen SD, Jensen SH, Hauch A, Mogensen MB (2014) Chem Rev 114(21):10697–10734CrossRefGoogle Scholar
  43. 43.
    Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves CR, Mogensen MB (2016) Nat Energy 1:1–13CrossRefGoogle Scholar
  44. 44.
    Wang Y, Liu T, Lei L, Chen F (2017) J Power Sources 344:119–127CrossRefGoogle Scholar
  45. 45.
    Keane M, Fan H, Han M, Singh P (2014) Int J Hydrog Energy 39(33):18718–18726CrossRefGoogle Scholar
  46. 46.
    Zhang L, Zhu X, Cao Z, Wang Z, Li W, Zhu L, Li P, Huang X, Lü Z (2017) Electrochim Acta 232:542–549CrossRefGoogle Scholar
  47. 47.
    Hauch A, Brodersen K, Chen M, Mogensen MB (2016) Solid State Ionics 293:27–36CrossRefGoogle Scholar
  48. 48.
    Lim CK, Liu Q, Zhou J, Sun Q, Chan SH (2017) J Power Sources 342:79–87CrossRefGoogle Scholar
  49. 49.
    Lee SJ, Jung CY, Yi SC (2017) Electrochim Acta 242:86–89CrossRefGoogle Scholar
  50. 50.
    Boulfrad S, Nechache A, Cassidy M, Traversa E, Irvine JTS (2015) ECS Trans 68(1):2011–2018CrossRefGoogle Scholar
  51. 51.
    Schouler EJL, Kleitz M, Forest E, Fernandez E, Fabry P (1981) Solid State Ionics 5:559–562CrossRefGoogle Scholar
  52. 52.
    Schefold J, Brisse A, Zahid M (2009) J Electrochem Soc 156(8):B897–B904CrossRefGoogle Scholar
  53. 53.
    Mansuy A (2012) PhD Thesis, Université Bordeaux 1, BordeauxGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut de Recherche de Chimie ParisPSL Research University – Chimie-ParisTech – CNRSParisFrance
  2. 2.Department of Science and Technology & MESA Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations