Skip to main content
Log in

The effect of alkyl chain of the imidazolium ring on the poly(o-methoxyaniline)/ionic liquid supercapacitor performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

New materials can be developed using a known compound with enhanced properties modifying and controlling its microstructure, morphology, and density of defects. In this work, a new material was produced by the addition of ionic liquid (IL) to the poly(o-methoxyaniline) (POMA) conductive polymer, in the form of esmeraldine salt. The polymer impregnated with IL was tested as an electrode for use in supercapacitors. The results show that the charge storage properties of the materials are dependent on the length of the alquil substituent of imidazolium ring of ionic liquid cation. The best results, obtained by the addition of 1-butyl-3-methylimidazolium triflate IL to the polymer, improved electrical charge storage and electrochemical stability, making the material a promising electrode for supercapacitor devices. This compound has specific capacitance of 205 F/g, five times larger than pure POMA and was stable for 3000 cycles of charge/discharge experiments carried out at 1.0 A/g.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  2. Liu W, Song M-S, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29(1):1603436

    Article  CAS  Google Scholar 

  3. Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44(19):6684–6696

    Article  CAS  PubMed  Google Scholar 

  4. Bryan AM, Santino LM, Lu Y, Acharya S, D’Arcy JM (2016) Conducting polymers for Pseudocapacitive energy storage. Chem Mater 28(17):5989–5998

    Article  CAS  Google Scholar 

  5. Liewa C-W, Arifin KH, Kawamura J, Iwai Y, Ramesha S, Arof AK (2017) Effect of halide anions in ionic liquid added poly(vinyl alcohol)-based ion conductors for electrical double layer capacitors. J Non-Cryst Solids 458:97–106

    Article  CAS  Google Scholar 

  6. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107

    Article  CAS  Google Scholar 

  7. Inzelt G (2011) Rise and rise of conducting polymers. J Solid State Electrochem 15(7-8):1711–1718

    Article  CAS  Google Scholar 

  8. Christinelli WA, Gonçalves R, Pereira EC (2016) Optimization of electrochemical capacitor stability of poly(o-methoxyaniline)-poly(3-thiophene acetic acid) self-assembled films. Electrochim Acta 196:741–748

    Article  CAS  Google Scholar 

  9. Christinelli WA, Gonçalves R, Pereira EC (2016) A new generation of electrochemical supercapacitors based on layer-by-layer polymer films. J Power Sources 303:73–80

    Article  CAS  Google Scholar 

  10. Gonçalves R, Christinelli WA, Trench AB, Cuesta A, Pereira EC (2017) Properties improvement of poly(o-methoxyaniline) based supercapacitors: experimental and theoretical behaviour study of self-doping effect. Electrochim Acta 228:57–65

    Article  CAS  Google Scholar 

  11. Yang X, Wang G, Wang R, Li X (2010) A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor. Electrochim Acta 55(19):5414–5419

    Article  CAS  Google Scholar 

  12. Mohammadi A, Peighambardoust SJ, Entezami AA, Arsalani N (2017) High performance of covalently grafted poly(o-methoxyaniline) nanocomposite in the presence of amine-functionalized graphene oxide sheets (POMA/f-GO) for supercapacitor applications. J Mater Sci Mater Electron 28:5776–5787

    Article  CAS  Google Scholar 

  13. Basnayaka PA, Ram MK, Stefanakos L, Kumar A (2013) High performance graphene-poly (o-anisidine) nanocomposite for supercapacitor applications. Mater Chem Phys 141(1):263–271

    Article  CAS  Google Scholar 

  14. Soares BG (2018) Ionic liquid: a smart approach for developing conducting polymer composites: a review. J Mol Liq 262:8–18

    Article  CAS  Google Scholar 

  15. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117(10):7190–7239

    Article  CAS  PubMed  Google Scholar 

  16. Pandey GP, Hashmi SA (2013) Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J Mater Chem A 1(10):3372–3378

    Article  CAS  Google Scholar 

  17. Liu H, Yu H (2018) Ionic liquids for electrochemical energy storage devices applications. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2018.10.007

  18. Marsousi S, Karimi-Sabet J, Moosavian MA, Amini Y (2019) Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics. Chem Eng J 356:492–505

    Article  CAS  Google Scholar 

  19. Deyab MA (2018) Ionic liquid as an electrolyte additive for high performance lead-acid batteries. J Power Sources 390:176–180

    Article  CAS  Google Scholar 

  20. Díaz M, Ortiz A, Ortiz I (2014) Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J Membr Sci 469:379–396

    Article  CAS  Google Scholar 

  21. Miao L, Zhu D, Liu M, Duan H, Wang Z, Lv Y, Xiong W, Zhu Q, Li L, Chai X, Gan L (2018) Cooking carbon with protic salt: nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors. Chem Eng J 347:233–242

    Article  CAS  Google Scholar 

  22. Miao L, Zhu D, Liu M, Duan H, Wang Z, Lv Y, Xiong W, Zhu Q, Li L, Chai X, Gan L (2018) N, S co-doped hierarchical porous carbon rods derived from protic salt: facile synthesis for high energy density supercapacitors. Electrochim Acta 274:378–388

    Article  CAS  Google Scholar 

  23. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580

    Article  CAS  Google Scholar 

  24. Zhu Q, Song Y, Zhu X, Wang X (2007) Ionic liquid-based electrolytes for capacitor applications. J Electroanal Chem 601(1-2):229–236

    Article  CAS  Google Scholar 

  25. Ketabi S, Decker B, Lian K (2016) Proton conducting ionic liquid electrolytes for liquid and solid-state electrochemical pseudocapacitores. Solid State Ionics 298:73–79

    Article  CAS  Google Scholar 

  26. Kim J, Kim S (2014) Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties. Appl Surf Sci 295:31–37

    Article  CAS  Google Scholar 

  27. Mattoso LHC, MacDiarmid AG, Epstein AJ (1994) Controlled synthesis of high molecular weight polyaniline and poly(o-methoxyaniline). Synth Met 68(1):1–11

    Article  CAS  Google Scholar 

  28. Dupont J, Consorti CS, Suarez PAZ, de Souza RF (2002) Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Org Synth 79:236–243

    Article  CAS  Google Scholar 

  29. Suarez PAZ, Dullius JEL, Einloft S, de Souza RF, Dupont J (1996) The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron 15(7):1217–1219

    Article  CAS  Google Scholar 

  30. Pohlmann S, Olyschläger T, Goodrich P, Vicente JA, Jacquemin J, Balducci A (2015) Azepanium-based ionic liquids as green electrolytes for high voltage supercapacitors. J Power Sources 273:931–936

    Article  CAS  Google Scholar 

  31. Motheo AJ, Pantoja MF, Venancio EC (2004) Effect of monomer ratio in the electrochemical synthesis of poly(aniline-co-o-methoxyaniline). Solid State Ionics 171(1-2):91–98

    Article  CAS  Google Scholar 

  32. Zhu D, Jiang J, Sun D, Qian X, Wang Y, Li L, Wang Z, Chai X, Gan L, Liu M (2018) A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors. J Mater Chem A 6(26):12334–12343

    Article  CAS  Google Scholar 

  33. Sui J, Zhang L, Peng H (2013) Label-free DNA sensor construction using self-assembled poly(o-methoxyaniline) hollow nanospheres. Eur Polym J 49(1):139–146

    Article  CAS  Google Scholar 

  34. Rall JD, Seehra MS (2012) The nature of the magnetism in quasi-2D layered α-Ni(OH)2. J Phys Condens Matter 24:8

    Article  CAS  Google Scholar 

  35. Mamma K, Siraj K, Meka N (2013) Effect on poly(C6H5NH2) emeraldine salt by FeCl3 and KMnO4 as secondary dopants. Am J Polym Sci Eng 1:1–13

    Google Scholar 

  36. Arof AK, Kufian MZ, Syukur MF, Aziz MF, Abdelrahman AE, Majid SR (2012) Electrical double layer capacitor using poly(methyl methacrylate)eC4BO8Li gel polymer electrolyte and carbonaceous material from shells of Mata kucing (Dimocarpus longan) fruit. Electrochim Acta 74:39–45

    Article  CAS  Google Scholar 

  37. Pandey GP, Kumar Y, Hashmi SA (2011) Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: a comparative study with lithium and magnesium systems. Solid State Ionics 190(1):93–98

    Article  CAS  Google Scholar 

  38. Kumbhar VS, Lokhande AC, Gaikwad NS, Lokhande CD (2015) Porous network of samarium sulfide thin films for supercapacitive application. Mater Sci Semicond Process 33:136–139

    Article  CAS  Google Scholar 

  39. Christinelli WA, da Trindade LG, Trench AB, Quintans CS, Paranhos CM, Pereira EC (2017) Energy 141:1829–1835

    Article  CAS  Google Scholar 

  40. Ćirić-Marjanović G (2013) Recent advances in polyaniline research: polymerization mechanisms, structural aspects properties and applications. Synth Met 177:1–47

    Article  CAS  Google Scholar 

  41. Hunter TB, Tyler PS, Smyrl WH, White HS (1987) Impedance analysis of poly(vinyferrocene) films: the dependence of diffusional charge transport and exchange current density on polymer oxidation state. J Electrochem Soc 134:2198–2204

    Article  CAS  Google Scholar 

  42. Ren X, Pickup PG (1997) An impedance study of electron transport and electron transfer in composite polypyrrole + polystyrenesulphonate films. J Electroanal Chem 420(1-2):251–257

    Article  CAS  Google Scholar 

  43. Bandeira MCE, Franco CV, Martini EMA (1999) Electrochemical impedance spectroscopy of poly{pyrrole-trans-[RuCl2(pmp)4]} copolymer films deposited on platinum electrodes. J Solid State Electrochem 3(4):210–214

    Article  CAS  Google Scholar 

  44. Amirudin A, Thierry D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog Org Coat 26(1):1–28

    Article  CAS  Google Scholar 

Download references

Funding

Financial support of this research was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant Nos. 2011/10897-2, 2016/05363-2, 2013/07296-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (402287/2013-4), Sistema de Laboratórios em Nanotecnologias/Ministério da Ciência, Tecnologia e Inovação (SISNANO/MCTI), Financiadora de Estudos e Projetos (FINEP), and Embrapa AgroNano research network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Pereira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Trindade, L.G., Christinelli, W.A., Zanchet, L. et al. The effect of alkyl chain of the imidazolium ring on the poly(o-methoxyaniline)/ionic liquid supercapacitor performance. J Solid State Electrochem 23, 1109–1119 (2019). https://doi.org/10.1007/s10008-018-04183-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-04183-4

Keywords

Navigation