Skip to main content
Log in

Potential of Si14Ge14 and B14P14 nanocages as electrodes of metal-ion batteries: a theoretical investigation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, the potential of Si14Ge14 and B14P14 as anode electrodes in metal-ion batteries by using of the density functional theory was investigated. The effects of halogen adsorption of the Si14Ge14 and B14P14 on potential of metal-ion batteries were examined. Results indicated that the B14P14 as anode in metal-ion batteries has higher potential than Si14Ge14. Results have shown that the K-ion battery has higher cell voltage and higher potential than Li-ion and Na-ion batteries. Results shown that the halogen adsorption of nanocages increases the cell voltage of studied metal-ion batteries. Results displayed that the F-metal-ion batteries have higher cell voltage and higher performance than Cl- and Br-metal-ion batteries. Finally, the F-B13P14 as anode electrode in the K-ion battery has the highest potential in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gao W, Haratipour P, Kahkha MRR, Tahvili A (2018) Ultrason Sonochem 44:152–161

    Article  CAS  PubMed  Google Scholar 

  2. Mahdavinia GH, Amani AM, Sepehrian H (2012) Chin J Chem 30(3):703–708

    Article  CAS  Google Scholar 

  3. Afshar A, Salami Hosseini A, Behzadfar E (2014) Sci Iran Trans C 21:2107–2115

    Google Scholar 

  4. Rostamizadeh S, Amani AM, Aryan R, Ghaieni HR, Norouzi L (2009) Monatsh Chem 140(5):547–552

    Article  CAS  Google Scholar 

  5. Kiani A, Haratipour P, Ahmadi M (2017) Zare-Dorabei. J Water Supply Res Technol 66(4):239–248

    Article  Google Scholar 

  6. Mostavi A, Kabir M, Ozevin D (2017) Appl Phys Lett 111(20):201905

    Article  CAS  Google Scholar 

  7. Hadipour NL, Ahmadi Peyghan A (2015) J Phys Chem C 119(11):6398–6404

    Article  CAS  Google Scholar 

  8. Khataee A, Bayat G, Azamat J (2017) J Mol Graph Model 71:176–183

    Article  CAS  PubMed  Google Scholar 

  9. Peyghan AA, Rastegar SF, Hadipour NL (2014) Phys Lett A 378:2184–2190

    Article  CAS  Google Scholar 

  10. Beheshtian J, Peyghan AA, Noei M (2013) Sensors Actuator B Chem 181:829–834

    Article  CAS  Google Scholar 

  11. Parsaee Z, Haratipour P, Lariche MJ, Vojood A (2018) Ultrason Sonochem 41:337–349

    Article  CAS  PubMed  Google Scholar 

  12. Rahimi A, Sepehr M, Lariche MJ (2018) Phys E: Low Dimens Syst Nanostruct 97:347–362

    Article  CAS  Google Scholar 

  13. Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2012) J Mol Model 19:255–261

    Article  CAS  PubMed  Google Scholar 

  14. Beheshtian J (2012) Monatsh Chem Chem Mon 143(12):1623–1626

    Article  CAS  Google Scholar 

  15. Pirbazari AE, Monazzam P, Kisomi BF (2017) Desalin Water Treat 63:283–292

    Article  CAS  Google Scholar 

  16. Pirbazari AE, Kisom BF, Khararoodi MG (2016) Desalin Water Treat 57(39):18202–18216

    Article  CAS  Google Scholar 

  17. Momtazan M, Niyakan M, Jaderi T, Hoseini Ahangari SA (2016) Res J Med Sci 10:49–53

    Google Scholar 

  18. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM (2008) Heteroat Chem 19(3):320–324

    Article  CAS  Google Scholar 

  19. Beheshtian J, Peyghan AA, Bagheri Z (2012) Appl Surf Sci 258(22):8980–8984

    Article  CAS  Google Scholar 

  20. Peyghan AA, Noei M, Tabar MB (2013) J Mol Model 19(8):3007–3014

    Article  CAS  PubMed  Google Scholar 

  21. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM (2010) J Heterocycl Chem 47:616–623

    CAS  Google Scholar 

  22. Rostamizadeh S, Abdollahi F, Shadjou N, Amani AM (2013) Monatsh Chem 144(8):1191–1196

    Article  CAS  Google Scholar 

  23. Amani AM (2014) Drug Res 65:5–8

    Article  CAS  Google Scholar 

  24. Shao D, Tang D, Yang J, Li Y (2015) J Power Sources 297:344–350

    Article  CAS  Google Scholar 

  25. Haratipour P, Baghban A, Mohammadi AH, Bahadori A (2017) J Mol Liq 242:146–159

    Article  CAS  Google Scholar 

  26. Chen B, Chu S, Cai R, Wei S, Hu R (2016) Comput Mater Sci 123:44–51

    Article  CAS  Google Scholar 

  27. Peyghan AA, Noei M (2014) J Mex Chem Soc 58:46–51

    CAS  Google Scholar 

  28. Mahdavinia GH, Rostamizadeh S, Amani AM (2012) Green Chem Lett Rev 5(3):255–281

    Article  CAS  Google Scholar 

  29. Lee SW, Yabuuchi N (2010) Nat Nanotechnol 5(7):531–537

    Article  CAS  PubMed  Google Scholar 

  30. Habibi A, Tarameshloo Z, Rostamizadeh S, Amani AM (2012) Lett Org Chem 9(3):155–159

    Article  CAS  Google Scholar 

  31. Qie L, Chen WM, Wang ZH (2012) Adv Mater 24(15):2047–2050

    Article  CAS  PubMed  Google Scholar 

  32. Doranehgard MH, Samadyar H, Mesbah M, Haratipour P, Samiezade S (2017) Fuel 202:29–35

    Article  CAS  Google Scholar 

  33. Liu Y, Artyukhov VI, Liu M (2013) J Phys Chem Lett 4(10):1737–1742

    Article  CAS  PubMed  Google Scholar 

  34. Rostamizadeh S, Ghaieni HR, Aryan R, Amani AM (2010) Synth Commun 40(20):3084–3092

    Article  CAS  Google Scholar 

  35. Peyghan AA, Noei M, Yourdkhani S (2013) Superlattice Microst 59:115–122

    Article  CAS  Google Scholar 

  36. Ouyang X, Lei M, Shi S, Luo C, Liu D (2009) J Alloys Compd 476(1-2):462–465

    Article  CAS  Google Scholar 

  37. Beheshtian J, Peyghan AA, Bagheri Z (2013) Struct Chem 24(5):1565–1570

    Article  CAS  Google Scholar 

  38. Shi S, Lu P, Liu Z, Qi Y, Hector LG (2012) J Am Chem Soc 134(37):15476–15487

    Article  CAS  PubMed  Google Scholar 

  39. Peyghan AA, Soltani A, Pahlevani AA (2013) Appl Surf Sci 270:25–32

    Article  CAS  Google Scholar 

  40. Joshaghani M, Ghasemi-Fare O, Ghavami M (2018) In IFCEE 12:675–685

    Google Scholar 

  41. Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D (2018) J Therm Anal Calorim 12:1–13

    Google Scholar 

  42. Jafarzadeh F, Jahromi HF, Yoosefi S, Sehizadeh M, Joshaghani M, Alavi AM (2012) In the 15th world conference on earthquake engineering, Beijing, China (15WCEE)

  43. Pourmand G, Safavi M, Ahmadi A, Houdeh E, Noori M, Mashhadi R, Pourmand N (2016) Cancer Urol J 13:2845–2848

    PubMed  Google Scholar 

  44. Bakhshi H, Khodabandeh E, Akbari O, Toghraie D, Joshaghani M, Rahbari A (2018) Intern J Num Meth For Heat Fluid Flow 12:1–5

    Google Scholar 

  45. Peyghan AA, Baei MT, Moghimi M (2012) Comput Theor Chem 997:63–69

    Article  CAS  Google Scholar 

  46. Golberg D, Bando Y, Huang Y (2010) ACS Nano 4(6):2979–2993

    Article  CAS  Google Scholar 

  47. Chen X, Wu P, Rousseas M, Okawa D (2009) J Am Chem Soc 131(3):890–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beheshtian J, Kamfiroozi M, Bagheri Z (2012) Chin J Chem Phys 25(1):60–64

    Article  CAS  Google Scholar 

  49. Si H, Lian G, Wang A, Cui D, Zhao M, Wang Q, Wong C (2015) Nano Lett 15(12):8122–8128

    Article  CAS  PubMed  Google Scholar 

  50. Oku T, Narita I, Nishiwaki A (2004) Mater Manuf Process 19(6):1215–1239

    Article  CAS  Google Scholar 

  51. Han L, Krstic P (2017) Nanotechnology 28:701–706

    Article  CAS  Google Scholar 

  52. Hosseini J, Rastgou A, Moradi R (2017) J Mol Liq 225:913–918

    Article  CAS  Google Scholar 

  53. Najafi M (2017) Can J Chem 95(6):687–690

    Article  CAS  Google Scholar 

  54. Nejati K, Hosseinian A, Bekhradnia A, Vessally E, Edjlali L (2017) J Mol Graph Model 74:1–7

    Article  CAS  PubMed  Google Scholar 

  55. Hosseinian A, Soleimani S, Arshadi S, Vessally E, Edjlali L (2017) Phys Lett A 381:2010–2015

    Article  CAS  Google Scholar 

  56. Soltani A, Baei MT, Mirara M, Sheikhi M (2014) Tazikeh. J Phys Chem Solids 75(10):1099–1105

    Article  CAS  Google Scholar 

  57. Wu H, Fan X (2012) Kuo JL. Int J Hydrog Energy 37(19):14336–14341

    Article  CAS  Google Scholar 

  58. Ayub K (2016) J Mater Chem C 4(46):10919–10934

    Article  CAS  Google Scholar 

  59. Kalateh K, Kheirollahpoor S (2015) Int J New Chem 2:213–222

    Google Scholar 

  60. Fowler PW, Heine T, Mitchell D, Schmidt R (1996) J Chem Soc Faraday Trans 92(12):2197–2201

    Article  CAS  Google Scholar 

  61. Moon WH, Son MS, Hwang HJ (2007) Appl Sur Sci 253(17):7078–7081

    Article  CAS  Google Scholar 

  62. Andzelm J, Kolmel C (1995) J Chem Phys 103(21):9312–9320

    Article  CAS  Google Scholar 

  63. Gan LH, Zhao JQ (2009) Phys E 41(7):1249–1252

    Article  CAS  Google Scholar 

  64. Boys SF, Bernardi F (1970) Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  65. Mousavi SM, Hashemi SA, Amani AM, Jahandideh S, Mojoudi F (2017) Poly Rene Reso 8:177–196

    Google Scholar 

  66. Mousavi SM, Hashemi SA, Arjmand M, Sharif F, Jahandideh S (2018) Chem Select 3(25):7200–7207

    CAS  Google Scholar 

  67. Fathollahi M, Rostamizadeh S, Amani AM (2018) Comb Chem High Throughput Screen 21(1):5–13

    Article  CAS  PubMed  Google Scholar 

  68. Amani AM (2014) Bulg Chem Commun 46:795–800

    Google Scholar 

  69. Hashemi SA, Mousavi SM, Faghihi R, Sina S, Amani AM (2018) Radiat Phys Chem 146:77–85

    Article  CAS  Google Scholar 

  70. Beheshtkhoo N, Kouhbanani MA, Savardashtaki A, Amani AM, Taghizadeh S (2018) Appl Phys A Mater Sci Process 124(5):363–367

    Article  CAS  Google Scholar 

  71. Rostamizadeh S, Amani AM, Shadjou N (2012) Phosphorus Sulfur Silicon Relat Elem 187:238–244

    Article  CAS  Google Scholar 

  72. Amani AM (2014) Drug Res 64:420–423

    CAS  Google Scholar 

  73. Rostamizadeh S, Shadjou N, Amani AM, Aryan RA (2008) J Heterocycl Chem 45(6):1761–1764

    Article  CAS  Google Scholar 

  74. Bagheri Z (2016) Appl Sur Sci 383:294–299

    Article  CAS  Google Scholar 

  75. Chen S, Ishii J, Horiuchi S, Fujita M, Izgorodina E (2017) Phys Chem Chem Phys 19(26):17366–17372

    Article  CAS  PubMed  Google Scholar 

  76. Nejati K, Hosseinian A (2014) J Mol Liq 229:167–171

    Article  CAS  Google Scholar 

  77. Nejati K (2017) J Mol Graph Mod 74:1–7

    Article  CAS  Google Scholar 

  78. Beheshtian J (2013) J Mol Model 19(3):1445–1450

    Article  CAS  PubMed  Google Scholar 

  79. Feng L (2011) Comp Theor Chem 964(1-3):56–64

    Article  CAS  Google Scholar 

  80. Wang J (2008) J Chem Phys 128(8):84306–84306

    Article  CAS  Google Scholar 

  81. Song L, Ci L, Lu H, Sorokin PB (2010) Nano Lett 10(8):3209–3215

    Article  CAS  PubMed  Google Scholar 

  82. Wang Z (2013) Nano Lett 13(9):4511–4516

    Article  CAS  PubMed  Google Scholar 

  83. Liu N (2012) Nano Lett 12(6):3315–3321

    Article  CAS  PubMed  Google Scholar 

  84. Sun J (2015) Nat Nanotechnol 10(11):980–985

    Article  CAS  PubMed  Google Scholar 

  85. Tarascon JM (2001) Nature 414(6861):359–367

    Article  CAS  PubMed  Google Scholar 

  86. Poizot P (2000) Nature 407(6803):496–499

    Article  CAS  PubMed  Google Scholar 

  87. Yuan Y (2015) Nano Lett 15(5):2998–3007

    Article  CAS  PubMed  Google Scholar 

  88. Lee S (2014) ACS Nano 9:626–632

    Article  CAS  PubMed  Google Scholar 

  89. Holtz ME (2014) Nano Lett 14(3):1453–1459

    Article  CAS  PubMed  Google Scholar 

  90. Niu J (2014) Nano Lett 14(7):4005–4010

    Article  CAS  PubMed  Google Scholar 

  91. Erickson EM (2014) J Phys Chem Lett 5(19):3313–3324

    Article  CAS  PubMed  Google Scholar 

  92. Luo L (2014) ACS Nano 8(11):11560–11566

    Article  CAS  PubMed  Google Scholar 

  93. Gregorczyk KE (2013) ACS Nano 7(7):6354–6360

    Article  CAS  PubMed  Google Scholar 

  94. Su Q (2013) ACS Nano 7(10):9115–9121

    Article  CAS  PubMed  Google Scholar 

  95. Wan F, Guo JZ, Zhang XH, Han DX, Niu L, Wu XL (2016) ACS Appl Mater Interfaces 8(12):7790–7799

    Article  CAS  PubMed  Google Scholar 

  96. Wang J, Liu DH, Wang YY, Hou BH, Zhang JP, Wu XL (2016) J Power Sour 307:738–745

    Article  CAS  Google Scholar 

  97. Wang J, Lü HY, Fan CY, Wan F, Guo JZ, Wang YY, Wu XL (2017) J Alloys Compd 694:208–216

    Article  CAS  Google Scholar 

  98. Wu XL, Guo YG, Wan LJ (2013) Chem Asian J 8(9):1948–1958

    Article  CAS  PubMed  Google Scholar 

  99. Ning QL, Hou BH, Wang YY, Liu DS (2018) ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b11103

  100. Wan F, Lü HY, Zhang XH, Liu DH, Zhang JP, He X, Wu XL (2016) J Alloys Compd 672:72–78

    Article  CAS  Google Scholar 

  101. Wan F, Lü HY, Wu XL, Yan X, Wang G, Han DX, Niu L (2016) Energy Storage Mat 5:214

    Article  Google Scholar 

  102. Oku T, Kuno M (2003) Diam Relat Mater 12(3-7):840–845

    Article  CAS  Google Scholar 

  103. Dunning TH (2000) J Phys Chem A 104(40):9062–9065

    Article  CAS  Google Scholar 

  104. Ruiz VG, Liu W, Zojer E, Tkatchenko A (2012) Phys Rev Lett 108(14):146103–146107

    Article  CAS  PubMed  Google Scholar 

  105. Zhao Y, Truhlar DG (2008) Theor Chem Account 120(1-3):215–218

    Article  CAS  Google Scholar 

  106. Mahmood A, Longo RL (2014) Phys Chem Chem Phys 87:1–7

    Google Scholar 

  107. Wheeler SE, Moran A, Pieniazek S, Houk K (2009) J Phys Chem A 113(38):10376–10381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chermette H (1999) J Comput Chem 20(1):129–154

    Article  CAS  Google Scholar 

  109. Geerlings P, Proft FD, Langenaeker W (2003) Chem Rev 103(5):1793–1873

    Article  CAS  Google Scholar 

  110. Roy RK, Saha S (2010) Prog Chem Sect C: Phys Chem 106:118–162

    Article  CAS  Google Scholar 

  111. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68(8):3801–3808

    Article  CAS  Google Scholar 

  112. Parr RG, Pearson RG (1983) J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  113. Rostamizadeh S, Amani AM, Mahdavinia GH, Shadjou N (2009) Chin Chem Lett 20(7):779–783

    Article  CAS  Google Scholar 

  114. Landi BJ, Ganter MJ, Cress CD (2009) Energy Environ Sci 2:638–654

    Article  CAS  Google Scholar 

  115. Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM (2008) Monatsh Chem 139(10):1241–1245

    Article  CAS  Google Scholar 

  116. Salari AA (2017) Inorg Chim Acta 456:18–23

    Article  CAS  Google Scholar 

  117. Mahdavinia GH, Rostamizadeh S, Amani AM, Sepehrian H (2012) Heterocycl Commun 18:33–37

    Article  CAS  Google Scholar 

  118. Bagheri Z, Peyghan AA (2013) Comput Theor Chem 1008:20–26

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks Dr. Ghafar Torkashvand for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Razieh Razavi or Meysam Najafi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi, R., Najafi, M. Potential of Si14Ge14 and B14P14 nanocages as electrodes of metal-ion batteries: a theoretical investigation. J Solid State Electrochem 23, 759–769 (2019). https://doi.org/10.1007/s10008-018-04176-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-04176-3

Keywords

Navigation