Skip to main content
Log in

Selective soluble polymer–assisted electrochemical delamination of chemical vapor deposition graphene

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We have explored an optimized electrochemical delamination technique to transfer large area graphene grown by chemical vapor deposition (CVD) technique. A selective soluble polystyrene (PS) layer was added above the polymethyl-methacrylate (PMMA)/graphene/Cu stack. With the help of this PS film, the stack could provide enough strength to be picked up directly from electrolyte and rinsed in several deionized (DI) water baths to eliminate H2 bubbles and residual electrolysis ions. Besides, the PS layer was selective dissolved before the stack was transferred onto the target substrate leaving only the thin PMMA protective layer and graphene film scooped out onto the target substrate, which make sure that the thin and plastic film could fully stretch out on the substrate. As a result, the transferred graphene displayed high quality with less wrinkles, holes, and contaminants. This two-layer film–assisted electrochemical delamination technique is expected to play an important role in the application of two-dimensional materials in electrics, optoelectronics, and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang DA, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  2. Xia F, Farmer DB, Lin YM, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718

    Article  CAS  PubMed  Google Scholar 

  3. Lin YM, Valdes-Garcia A, Han SJ, Farmer DB, Meric I, Sun Y, Wu Y, Dimitrakopoulos C, Grill A, Avouris P, Jenkins KA (2011) Wafer-scale graphene integrated circuit. Science 332(6035):1294–1297

    Article  CAS  PubMed  Google Scholar 

  4. Andersson MA, Zhang Y, Stake J (2017) A 185–215-GHz subharmonic resistive graphene FET integrated mixer on silicon. IRE Trans Microwave Theory Tech 65(1):165–172

    Article  Google Scholar 

  5. Huang H, Ma L, Tiwary CS, Jiang Q, Yin K, Zhou W, Ajayan PM (2017) Worm-shape Pt nanocrystals grown on nitrogen-doped low-defect graphene sheets: highly efficient electrocatalysts for methanol oxidation reaction. Small 13(10):1603013

    Article  CAS  Google Scholar 

  6. Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham TK, Liu LM, Botton GA (2016) Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 7(1):13638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen H, Xu H, Wang S, Huang T, Xi J, Cai S, Guo F, Xu Z, Gao W, Gao C (2017) Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci Adv 3(12):eaao7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu S, Zhan J, Man B, Jiang S, Yue W, Gao S, Guo C, Liu H, Li Z, Wang J, Zhou Y (2017) Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat Commun 8:14902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang Y, Sutter E, Shi NN, Zheng J, Yang T, Englund D, Gao HJ, Sutter P (2015) Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9(11):10612–10620

    Article  CAS  PubMed  Google Scholar 

  10. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207

    Article  CAS  PubMed  Google Scholar 

  11. Mishra N, Boeckl J, Motta N, Iacopi F (2016) Graphene growth on silicon carbide: a review. Phys Status Solidi A 213(9):2277–2289

    Article  CAS  Google Scholar 

  12. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  13. Guo L, Yin X, Wu W, Meng H (2017) Preparation of graphene via liquid-phase exfoliation with high gravity technology from edge-oxidized graphite. Colloids Surf A Physicochem Eng Asp 531:25–31

    Article  CAS  Google Scholar 

  14. Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 24:1243879

    Google Scholar 

  15. Lee JH, Lee EK, Joo WJ, Jang Y, Kim BS, Lim JY, Choi SH, Ahn SJ, Ahn JR, Park MH, Yang CW (2014) Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344(6181):286–289

    Article  CAS  PubMed  Google Scholar 

  16. Hsieh YP, Chen DR, Chiang WY, Chen KJ, Hofmann M (2017) Recrystallization of copper at a solid interface for improved CVD graphene growth. RSC Adv 7(7):3736–3740

    Article  CAS  Google Scholar 

  17. Chen Y, Gong XL, Gai JG (2016) Progress and challenges in transfer of large-area graphene films. Adv Sci 3:1500343

    Article  CAS  Google Scholar 

  18. Liang X, Sperling BA, Calizo I, Cheng G, Hacker CA, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X (2011) Toward clean and crackless transfer of graphene. ACS Nano 5(11):9144–9153

    Article  CAS  PubMed  Google Scholar 

  19. Hallam T, Berner NC, Yim C, Duesberg GS (2014) Strain, bubbles, dirt, and folds: a study of graphene polymer-assisted transfer. Adv Mater Interfaces 1(6):1400115

    Article  CAS  Google Scholar 

  20. Zhan D, Sun L, Ni ZH, Liu L, Fan XF, Wang Y, Yu T, Lam YM, Huang W, Shen ZX (2010) FeCl3-based few-layer graphene intercalation compounds: single linear dispersion electronic band structure and strong charge transfer doping. Adv Funct Mater 20(20):3504–3509

    Article  CAS  Google Scholar 

  21. Lin WH, Chen TH, Chang JK, Taur JI, Lo YY, Lee WL, Chang CS, Su WB, Wu CI (2014) A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 8(2):1784–1791

    Article  CAS  PubMed  Google Scholar 

  22. Wood JD, Doidge GP, Carrion EA, Koepke JC, Kaitz JA, Datye I, Behnam A, Hewaparakrama J, Aruin B, Chen Y, Dong H (2015) Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnol 26(5):055302

    Article  CAS  Google Scholar 

  23. Barin GB, Song Y, de Fátima Gimenez I, Souza Filho AG, Barreto LS, Kong J (2015) Optimized graphene transfer: influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon 84:82–90

    Article  CAS  Google Scholar 

  24. Kim HH, Lee SK, Lee SG, Lee E, Cho K (2016) Wetting-assisted crack-and wrinkle-free transfer of wafer-scale graphene onto arbitrary substrates over a wide range of surface energies. Adv Funct Mater 26(13):2070–2077

    Article  CAS  Google Scholar 

  25. Kim S, Shin S, Kim T, Du H, Song M, Lee C, Kim K, Cho S, Seo DH, Seo S (2016) Robust graphene wet transfer process through low molecular weight polymethylmethacrylate. Carbon 98:352–357

    Article  CAS  Google Scholar 

  26. Van Ngoc H, Qian Y, Han SK, Kang DJ (2016) PMMA-etching-free transfer of wafer-scale chemical vapor deposition two-dimensional atomic crystal by a water soluble polyvinyl alcohol polymer method. Sci Rep 6:33096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh KP (2011) Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5(12):9927–9933

    Article  CAS  PubMed  Google Scholar 

  28. de la Rosa CJ, Sun J, Lindvall N, Cole MT, Nam Y, Löffler M, Olsson E, Teo KB, Yurgens A (2013) Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on cu. Appl Phys Lett 102(2):022101

    Article  CAS  Google Scholar 

  29. Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma LP, Zhang Z, Fu Q, Peng LM, Bao X (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3(1):699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang X, Peng H, Xie Q, Zhou Y, Liu Z (2013) Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. J Electroanal Chem 688:243–248

    Article  CAS  Google Scholar 

  31. Zhan Z, Sun J, Liu L, Wang E, Cao Y, Lindvall N, Skoblin G, Yurgens A (2015) Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. J Mater Chem C 3(33):8634–8641

    Article  CAS  Google Scholar 

  32. Cherian CT, Giustiniano F, Martin-Fernandez I, Andersen H, Balakrishnan J, Özyilmaz B (2015) ‘Bubble-Free’Electrochemical delamination of CVD graphene films. Small 11(2):189–194

    Article  CAS  PubMed  Google Scholar 

  33. Wong CH, Pumera M (2016) Electrochemical delamination and chemical etching of chemical vapor deposition graphene: contrasting properties. J Phys Chem C 120(8):4682–4690

    Article  CAS  Google Scholar 

  34. Zhong H, Zhang Z, Xu H, Qiu C, Peng LM (2015) Comparison of mobility extraction methods based on field-effect measurements for graphene. AIP Adv 5(5):057136

    Article  CAS  Google Scholar 

  35. Guo W, Jing F, Xiao J, Zhou C, Lin Y, Wang S (2016) Oxidative-etching-assisted synthesis of centimeter-sized single-crystalline graphene. Adv Mater 28(16):3152–3158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dayong Zhang for the help in the preparation and measurement of graphene back-gate field-effect transistor.

Funding

This work was supported by the National Science Foundation of China (Nos. 61604175, 61427901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weier Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Cheng, S., Yan, M. et al. Selective soluble polymer–assisted electrochemical delamination of chemical vapor deposition graphene. J Solid State Electrochem 23, 943–951 (2019). https://doi.org/10.1007/s10008-018-04172-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-04172-7

Keywords

Navigation