Abstract
Lithium aluminum titanium phosphate (LATP), a NASICON-type (structure of Na1 + xZr2SixP3 − xO12, 0 < x < 3) lithium ionic conductor, possesses high ionic conductivity at ambient temperature and sufficiently high electrochemical stability compared to well-established types of solid electrolytes. This ensures LATP being potentially used as solid electrolyte for all-solid-state supercapacitors. In the pure ionic conductors like LATP, the stoichiometry change under work potential for energy storage is not possible. Therefore, it is essential to produce heterophase contacts, at which the compositional changes could occur. Carbon nanotube (CNT), an excellent electronical conductor, has been consequently mixed with LATP. The all-solid-state supercapacitors with this LATP/CNT mixture have been manufactured in sandwich structure—two mixture layers separated by a pure LATP layer as separator. And the impedance behavior as well as supercapacitance dependent on various CNT weight percentages (1–7.5%) has been investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The results clearly prove that electrical double layer could be formed at the heterophase contacts indicating the supercapacitance behavior of the device, especially when the high contents of CNTs are used. The capacitance of specimen without CNT shows only a value of 0.52 mF/cm3, which is strongly promoted to 11.59 mF/cm3 when CNT content increases to 7.5%.
This is a preview of subscription content,
to check access.




Similar content being viewed by others
References
Zhang Q, Dong QF, Zheng MS, Tian ZW (2011) Electrochemical energy storage device for electric vehicles. J Electrochem Soc 158(5):A443–A446. https://doi.org/10.1149/1.3556586
White Paper Electrical Energy Storage (2011) International Electrotechnical Commission, ISBN 978-2-88912-889-1
Elliman R, Gould C, Al-Tai M (2015) Review of current and future electrical energy storage devices, Power Engineering Conference (UPEC), 2015 50th International Universities. doi:https://doi.org/10.1109/UPEC.2015.7339795
Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New York. https://doi.org/10.1007/978-1-4757-3058-6
West A (2014) Solid state chemistry and its applications, second edn. John Wiley & Sons Ltd, Chichester
Chen CC, Fu LJ, Maier J (2016) Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536(7615):159–163. https://doi.org/10.1038/nature19078
LJ F, Chen CC, Samuelis D, Maier J (2014) Thermodynamics of lithium storage at abrupt junctions: modeling and experimental evidence. Phys Rev Lett 112:208301
Fu LJ, Tang K, Oh H, Manickam K, Braeuniger T, Chandran CV, Menzel A, Hirscher M, Samuelis D, Maier J (2015) ‘Job-sharing’ storage of hydrogen in Ru/Li2O nanocomposites. Nano Lett 15(6):4170–4175. https://doi.org/10.1021/acs.nanolett.5b01320
Francisco B, Jones C, Lee S, Stoldt C (2012) Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte. Appl Phys Lett 100(10):103902. https://doi.org/10.1063/1.3693521
Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182(1):116–119. https://doi.org/10.1016/j.ssi.2010.10.013
Fu J (1997) Superionic conductivity of glass/ceramics in the system Li2O-A12O3-TiO2-SiO2-P2O5. Solid State Ionics 96(3-4):195–200. https://doi.org/10.1016/S0167-2738(97)00018-0
Fu J (1997) Fast Li+ ion conduction in Li2O-A12O3-TiO2-SiO2-P2O5 glass-ceramics. J Am Ceram Soc 80:1901–1903
Wen ZY, Xu XX, Li JX (2009) Preparation, microstructure and electrical properties of Li1.4Al0.4Ti1.6(PO4)3 nanoceramics. J Electroceram 22(1-3):342–345. https://doi.org/10.1007/s10832-008-9420-7
Liao GY, Geier S, Mahrholz T, Wierach P, Wiedemann M (2015) Li1.4Al0.4Ti1.6(PO4)3 used as solid electrolyte for structural supercapacitors, ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, at Colorado Springs, Co, USA. doi:10.13140/RG.2.1.3581.4169
Pint CL, Nicholas NW, Xu S, Sun ZZ, Tour JM, Schmidt HK, Gordon RG, Hauge RH (2011) Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49(14):4890–4897. https://doi.org/10.1016/j.carbon.2011.07.011
Chen WC, Wen TC, Teng H (2003) Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim Acta 48(6):641–649. https://doi.org/10.1016/S0013-4686(02)00734-X
Rafik F, Guolous H, Gallay R, Crausaz A, Berthon A (2007) Frequency, thermal and voltage supercapacitor characterization and modeling. J Power Source 165(2):928–934. https://doi.org/10.1016/j.jpowsour.2006.12.021
Nian YR, Teng H (2003) Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. J Electroanal Chem 540:119–127. https://doi.org/10.1016/S0022-0728(02)01299-8
Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101(1):109–116. https://doi.org/10.1016/S0378-7753(01)00707-8
Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292–A300. https://doi.org/10.1149/1.1543948
Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50(20):4174–4181. https://doi.org/10.1016/j.electacta.2005.01.038
Garcia-Gomez A, Miles P, Centeno TA, Rojo JM (2010) Uniaxially oriented carbon monoliths as supercapacitor electrodes. Electrochim Acta 55(28):8539–8544. https://doi.org/10.1016/j.electacta.2010.07.072
Chaudoy V, Tran Van F, Deschamps M, Ghamouss F (2017) Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor. J Power Sources 342:872–878. https://doi.org/10.1016/j.jpowsour.2016.12.097
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liao, G., Mahrholz, T., Geier, S. et al. Nanostructured all-solid-state supercapacitors based on NASICON-type Li1.4Al0.4Ti1.6(PO4)3 electrolyte. J Solid State Electrochem 22, 1055–1061 (2018). https://doi.org/10.1007/s10008-017-3849-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10008-017-3849-z