Skip to main content

Nanostructured all-solid-state supercapacitors based on NASICON-type Li1.4Al0.4Ti1.6(PO4)3 electrolyte

Abstract

Lithium aluminum titanium phosphate (LATP), a NASICON-type (structure of Na1 + xZr2SixP3 − xO12, 0 < x < 3) lithium ionic conductor, possesses high ionic conductivity at ambient temperature and sufficiently high electrochemical stability compared to well-established types of solid electrolytes. This ensures LATP being potentially used as solid electrolyte for all-solid-state supercapacitors. In the pure ionic conductors like LATP, the stoichiometry change under work potential for energy storage is not possible. Therefore, it is essential to produce heterophase contacts, at which the compositional changes could occur. Carbon nanotube (CNT), an excellent electronical conductor, has been consequently mixed with LATP. The all-solid-state supercapacitors with this LATP/CNT mixture have been manufactured in sandwich structure—two mixture layers separated by a pure LATP layer as separator. And the impedance behavior as well as supercapacitance dependent on various CNT weight percentages (1–7.5%) has been investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The results clearly prove that electrical double layer could be formed at the heterophase contacts indicating the supercapacitance behavior of the device, especially when the high contents of CNTs are used. The capacitance of specimen without CNT shows only a value of 0.52 mF/cm3, which is strongly promoted to 11.59 mF/cm3 when CNT content increases to 7.5%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Zhang Q, Dong QF, Zheng MS, Tian ZW (2011) Electrochemical energy storage device for electric vehicles. J Electrochem Soc 158(5):A443–A446. https://doi.org/10.1149/1.3556586

    CAS  Article  Google Scholar 

  2. White Paper Electrical Energy Storage (2011) International Electrotechnical Commission, ISBN 978-2-88912-889-1

  3. Elliman R, Gould C, Al-Tai M (2015) Review of current and future electrical energy storage devices, Power Engineering Conference (UPEC), 2015 50th International Universities. doi:https://doi.org/10.1109/UPEC.2015.7339795

  4. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New York. https://doi.org/10.1007/978-1-4757-3058-6

    Book  Google Scholar 

  5. West A (2014) Solid state chemistry and its applications, second edn. John Wiley & Sons Ltd, Chichester

  6. Chen CC, Fu LJ, Maier J (2016) Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536(7615):159–163. https://doi.org/10.1038/nature19078

    CAS  Article  Google Scholar 

  7. LJ F, Chen CC, Samuelis D, Maier J (2014) Thermodynamics of lithium storage at abrupt junctions: modeling and experimental evidence. Phys Rev Lett 112:208301

    Article  Google Scholar 

  8. Fu LJ, Tang K, Oh H, Manickam K, Braeuniger T, Chandran CV, Menzel A, Hirscher M, Samuelis D, Maier J (2015) ‘Job-sharing’ storage of hydrogen in Ru/Li2O nanocomposites. Nano Lett 15(6):4170–4175. https://doi.org/10.1021/acs.nanolett.5b01320

    CAS  Article  Google Scholar 

  9. Francisco B, Jones C, Lee S, Stoldt C (2012) Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte. Appl Phys Lett 100(10):103902. https://doi.org/10.1063/1.3693521

    Article  Google Scholar 

  10. Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182(1):116–119. https://doi.org/10.1016/j.ssi.2010.10.013

    CAS  Article  Google Scholar 

  11. Fu J (1997) Superionic conductivity of glass/ceramics in the system Li2O-A12O3-TiO2-SiO2-P2O5. Solid State Ionics 96(3-4):195–200. https://doi.org/10.1016/S0167-2738(97)00018-0

    CAS  Article  Google Scholar 

  12. Fu J (1997) Fast Li+ ion conduction in Li2O-A12O3-TiO2-SiO2-P2O5 glass-ceramics. J Am Ceram Soc 80:1901–1903

    CAS  Article  Google Scholar 

  13. Wen ZY, Xu XX, Li JX (2009) Preparation, microstructure and electrical properties of Li1.4Al0.4Ti1.6(PO4)3 nanoceramics. J Electroceram 22(1-3):342–345. https://doi.org/10.1007/s10832-008-9420-7

    CAS  Article  Google Scholar 

  14. Liao GY, Geier S, Mahrholz T, Wierach P, Wiedemann M (2015) Li1.4Al0.4Ti1.6(PO4)3 used as solid electrolyte for structural supercapacitors, ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, at Colorado Springs, Co, USA. doi:10.13140/RG.2.1.3581.4169

  15. Pint CL, Nicholas NW, Xu S, Sun ZZ, Tour JM, Schmidt HK, Gordon RG, Hauge RH (2011) Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49(14):4890–4897. https://doi.org/10.1016/j.carbon.2011.07.011

    CAS  Article  Google Scholar 

  16. Chen WC, Wen TC, Teng H (2003) Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim Acta 48(6):641–649. https://doi.org/10.1016/S0013-4686(02)00734-X

    CAS  Article  Google Scholar 

  17. Rafik F, Guolous H, Gallay R, Crausaz A, Berthon A (2007) Frequency, thermal and voltage supercapacitor characterization and modeling. J Power Source 165(2):928–934. https://doi.org/10.1016/j.jpowsour.2006.12.021

    CAS  Article  Google Scholar 

  18. Nian YR, Teng H (2003) Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. J Electroanal Chem 540:119–127. https://doi.org/10.1016/S0022-0728(02)01299-8

    CAS  Article  Google Scholar 

  19. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101(1):109–116. https://doi.org/10.1016/S0378-7753(01)00707-8

    CAS  Article  Google Scholar 

  20. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292–A300. https://doi.org/10.1149/1.1543948

    CAS  Article  Google Scholar 

  21. Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50(20):4174–4181. https://doi.org/10.1016/j.electacta.2005.01.038

    CAS  Article  Google Scholar 

  22. Garcia-Gomez A, Miles P, Centeno TA, Rojo JM (2010) Uniaxially oriented carbon monoliths as supercapacitor electrodes. Electrochim Acta 55(28):8539–8544. https://doi.org/10.1016/j.electacta.2010.07.072

    CAS  Article  Google Scholar 

  23. Chaudoy V, Tran Van F, Deschamps M, Ghamouss F (2017) Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor. J Power Sources 342:872–878. https://doi.org/10.1016/j.jpowsour.2016.12.097

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyue Liao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, G., Mahrholz, T., Geier, S. et al. Nanostructured all-solid-state supercapacitors based on NASICON-type Li1.4Al0.4Ti1.6(PO4)3 electrolyte. J Solid State Electrochem 22, 1055–1061 (2018). https://doi.org/10.1007/s10008-017-3849-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3849-z

Keywords

  • Supercapacitor
  • Solid electrolyte
  • Carbon nanotube
  • Cyclic voltammetry
  • Electrochemical impedance spectroscopy