Zhang Q, Dong QF, Zheng MS, Tian ZW (2011) Electrochemical energy storage device for electric vehicles. J Electrochem Soc 158(5):A443–A446. https://doi.org/10.1149/1.3556586
CAS
Article
Google Scholar
White Paper Electrical Energy Storage (2011) International Electrotechnical Commission, ISBN 978-2-88912-889-1
Elliman R, Gould C, Al-Tai M (2015) Review of current and future electrical energy storage devices, Power Engineering Conference (UPEC), 2015 50th International Universities. doi:https://doi.org/10.1109/UPEC.2015.7339795
Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New York. https://doi.org/10.1007/978-1-4757-3058-6
Book
Google Scholar
West A (2014) Solid state chemistry and its applications, second edn. John Wiley & Sons Ltd, Chichester
Chen CC, Fu LJ, Maier J (2016) Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536(7615):159–163. https://doi.org/10.1038/nature19078
CAS
Article
Google Scholar
LJ F, Chen CC, Samuelis D, Maier J (2014) Thermodynamics of lithium storage at abrupt junctions: modeling and experimental evidence. Phys Rev Lett 112:208301
Article
Google Scholar
Fu LJ, Tang K, Oh H, Manickam K, Braeuniger T, Chandran CV, Menzel A, Hirscher M, Samuelis D, Maier J (2015) ‘Job-sharing’ storage of hydrogen in Ru/Li2O nanocomposites. Nano Lett 15(6):4170–4175. https://doi.org/10.1021/acs.nanolett.5b01320
CAS
Article
Google Scholar
Francisco B, Jones C, Lee S, Stoldt C (2012) Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte. Appl Phys Lett 100(10):103902. https://doi.org/10.1063/1.3693521
Article
Google Scholar
Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182(1):116–119. https://doi.org/10.1016/j.ssi.2010.10.013
CAS
Article
Google Scholar
Fu J (1997) Superionic conductivity of glass/ceramics in the system Li2O-A12O3-TiO2-SiO2-P2O5. Solid State Ionics 96(3-4):195–200. https://doi.org/10.1016/S0167-2738(97)00018-0
CAS
Article
Google Scholar
Fu J (1997) Fast Li+ ion conduction in Li2O-A12O3-TiO2-SiO2-P2O5 glass-ceramics. J Am Ceram Soc 80:1901–1903
CAS
Article
Google Scholar
Wen ZY, Xu XX, Li JX (2009) Preparation, microstructure and electrical properties of Li1.4Al0.4Ti1.6(PO4)3 nanoceramics. J Electroceram 22(1-3):342–345. https://doi.org/10.1007/s10832-008-9420-7
CAS
Article
Google Scholar
Liao GY, Geier S, Mahrholz T, Wierach P, Wiedemann M (2015) Li1.4Al0.4Ti1.6(PO4)3 used as solid electrolyte for structural supercapacitors, ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, at Colorado Springs, Co, USA. doi:10.13140/RG.2.1.3581.4169
Pint CL, Nicholas NW, Xu S, Sun ZZ, Tour JM, Schmidt HK, Gordon RG, Hauge RH (2011) Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49(14):4890–4897. https://doi.org/10.1016/j.carbon.2011.07.011
CAS
Article
Google Scholar
Chen WC, Wen TC, Teng H (2003) Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim Acta 48(6):641–649. https://doi.org/10.1016/S0013-4686(02)00734-X
CAS
Article
Google Scholar
Rafik F, Guolous H, Gallay R, Crausaz A, Berthon A (2007) Frequency, thermal and voltage supercapacitor characterization and modeling. J Power Source 165(2):928–934. https://doi.org/10.1016/j.jpowsour.2006.12.021
CAS
Article
Google Scholar
Nian YR, Teng H (2003) Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. J Electroanal Chem 540:119–127. https://doi.org/10.1016/S0022-0728(02)01299-8
CAS
Article
Google Scholar
Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101(1):109–116. https://doi.org/10.1016/S0378-7753(01)00707-8
CAS
Article
Google Scholar
Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292–A300. https://doi.org/10.1149/1.1543948
CAS
Article
Google Scholar
Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50(20):4174–4181. https://doi.org/10.1016/j.electacta.2005.01.038
CAS
Article
Google Scholar
Garcia-Gomez A, Miles P, Centeno TA, Rojo JM (2010) Uniaxially oriented carbon monoliths as supercapacitor electrodes. Electrochim Acta 55(28):8539–8544. https://doi.org/10.1016/j.electacta.2010.07.072
CAS
Article
Google Scholar
Chaudoy V, Tran Van F, Deschamps M, Ghamouss F (2017) Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor. J Power Sources 342:872–878. https://doi.org/10.1016/j.jpowsour.2016.12.097
CAS
Article
Google Scholar