Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1507–1515 | Cite as

Electrochromic and spectroelectrochemical properties of polythiophene β-substituted with alkyl and alkoxy groups

Original Paper
  • 73 Downloads

Abstract

Polythiophenes are conjugated polymers that are highly promising candidates for use as an active layer in flexible optoelectronic devices. The β-substitution position in the thiophene ring minimizes the occurrence of couplings during polymerization, producing more regular structures and resulting in better properties. The relatively high stability and the possibility of tuning the properties by molecular engineering make polythiophenes one of the most versatile classes of conjugated polymers. In this study, we present an investigation of the influence of two types of polythiophenes on their spectroelectrochemical properties: (i) poly(alcoxythiophenes) (POTs), including poly(3-methoxythiophene) (PMOT) and poly(3,4-ethylenedioxythiophene) (PEDOT), and (ii) poly(3-alkylthiophenes) (PYTs), including poly(3-hexylthiophene) (P3HT) and poly(3-dodecylthiophene) (PDDT). The polymers were electrochemically synthesized by cyclic voltammetry and characterized by infrared spectroscopy. The “in situ” simultaneous optical absorption and fluorescence investigation of the solutions showed new energy state polarons in the redox process. Chronoabsorptometry measurements enabled determination of parameters such as electrochromic efficiency, coulombic efficiency, optical contrast, and switching time of the polymers in the reduced and oxidized states. A switching time of 2 s and an electrochemical efficiency of almost 90 cm2 C−1 are promising for applying these polymers in electrochromic devices.

Keywords

Substituted polythiophenes Electrochemistry Electrochromism 

Notes

Acknowledgments

This work was supported by CNPq (457586/2014-1), CAPES, FAPEMIG (TEC-APQ-02715-14), and CTNano. We also would like to thank professors Tulio Matencio - UFMG and Marcos Roberto de Abreu Alves - UNIFEI for the important discussions.

References

  1. 1.
    Subramani T, Chen J, Sun Y, Jevasuwan W, Fukata N (2017) Nano energy high-efficiency silicon hybrid solar cells employing nanocrystalline Si quantum dots and Si nanotips for energy management. Nano Energy 35:154–160.  https://doi.org/10.1016/j.nanoen.2017.03.037 CrossRefGoogle Scholar
  2. 2.
    Angaridis PA, Lazarides T, Coutsolelos AC (2014) Functionalized porphyrin derivatives for solar energy conversion. Polyhedron 82:19–32.  https://doi.org/10.1016/j.poly.2014.04.039 CrossRefGoogle Scholar
  3. 3.
    Mortimer RJ (2011) MR41CH10-Mortimer Electrochromic materials. Annu Rev Mater Res 41(1):241–268.  https://doi.org/10.1146/annurev-matsci-062910-100344 CrossRefGoogle Scholar
  4. 4.
    Granqvist CG (2014) Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564:1–38.  https://doi.org/10.1016/j.tsf.2014.02.002 CrossRefGoogle Scholar
  5. 5.
    Fan M-S, Lee C-P, Vittal R, Ho K-C (2017) A novel ionic liquid with stable radical as the electrolyte for hybrid type electrochromic devices. Sol Energy Mater Sol Cells 166:61–68.  https://doi.org/10.1016/j.solmat.2017.03.009 CrossRefGoogle Scholar
  6. 6.
    Bin GC, He LH, Long JF, Liu LT, Liu S, Tang Q et al (2016) Synthesis and characterisation of azobenzene-bridged cationic-cationic and neutral-cationic electrochromic materials. Synth Met 220:147–154CrossRefGoogle Scholar
  7. 7.
    Zhang J, Chen Z, Wang X-Y, Guo S-Z, Dong Y-B, G-A Y et al (2017) Redox-modulated near-infrared electrochromism, electroluminochromism, and aggregation-induced fluorescence change in an indolo[3,2-b]carbazole-bridged diamine system. Sensors Actuators B Chem 246:570–577.  https://doi.org/10.1016/j.snb.2017.02.114 CrossRefGoogle Scholar
  8. 8.
    Liu H-M, Saikia D, C-G W, Fang J, Kao H-M (2017) Solid polymer electrolytes based on coupling of polyetheramine and organosilane for applications in electrochromic devices. Solid State Ionics 303:144–153.  https://doi.org/10.1016/j.ssi.2017.03.005 CrossRefGoogle Scholar
  9. 9.
    Kiruthika S, Kulkarni GU (2017) Energy efficient hydrogel based smart windows with low cost transparent conducting electrodes. Sol Energy Mater Sol Cells 163:231–236.  https://doi.org/10.1016/j.solmat.2017.01.039 CrossRefGoogle Scholar
  10. 10.
    Kelly FM, Meunier L, Cochrane C, Koncar V (2013) Polyaniline: application as solid state electrochromic in a flexible textile display. Displays 34(1):1–7.  https://doi.org/10.1016/j.displa.2012.10.001 CrossRefGoogle Scholar
  11. 11.
    Chotsuwan C, Asawapirom U, Shimoi Y, Akiyama H, Ngamaroonchote A, Jiemsakul T, Jiramitmongkon K (2017) Investigation of the electrochromic properties of tri-block polyaniline-polythiophene-polyaniline under visible light. Synth Met 226:80–88.  https://doi.org/10.1016/j.synthmet.2017.02.001 CrossRefGoogle Scholar
  12. 12.
    Jensen J, Hösel M, Kim I, JS Y, Jo J, Krebs FC (2014) Fast switching ITO free Electrochromic devices. Adv Funct Mater 24(9):1228–1233.  https://doi.org/10.1002/adfm.201302320 CrossRefGoogle Scholar
  13. 13.
    Groenendaal L, Zotti G, Aubert PH, Waybright SM, Reynolds JR (2003) Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv Mater 15(11):855–879.  https://doi.org/10.1002/adma.200300376 CrossRefGoogle Scholar
  14. 14.
    Calado HDR, Matencio T, Donnici CL, Cury LA, Rieumont J, Pernaut JM (2008) Synthesis and electrochemical and optical characterization of poly(3-octadecylthiophene). Synth Met 158(21–24):1037–1042.  https://doi.org/10.1016/j.synthmet.2008.07.003 CrossRefGoogle Scholar
  15. 15.
    Lai JC, Lu XR, Qu BT, Liu F, Li CH, You XZ (2014) A new multicolored and near-infrared electrochromic material based on triphenylamine-containing poly(3,4-dithienylpyrrole). Org Electron Physics, Mater Appl 15(12):3735–3745Google Scholar
  16. 16.
    Kerszulis JA, Amb CM, Dyer AL, Reynolds JR (2014) Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers. Macromolecules 47(16):5462–5469.  https://doi.org/10.1021/ma501080u CrossRefGoogle Scholar
  17. 17.
    Zhong YW, Yao CJ, Nie HJ (2013) Electropolymerized films of vinyl-substituted polypyridine complexes: synthesis, characterization, and applications. Coord Chem Rev 257(7–8):1357–1372.  https://doi.org/10.1016/j.ccr.2013.01.001 CrossRefGoogle Scholar
  18. 18.
    Beverina L, Pagani GA, Sassi M (2014) Multichromophoric electrochromic polymers: colour tuning of conjugated polymers through the side chain functionalization approach. Chem Commun (Camb) 50(41):5413–5430.  https://doi.org/10.1039/C4CC00163J CrossRefGoogle Scholar
  19. 19.
    Liu W, Gu C, Wang J, Sun M, Yang R (2014) Electrochemistry and near-infrared electrochromism of electropolymerized polydithiophenes with β, β’-positions bridged by carbonyl or dicarbonyl substitute. Electrochim Acta 142:108–117.  https://doi.org/10.1016/j.electacta.2014.07.111 CrossRefGoogle Scholar
  20. 20.
    Dietrich M, Heinze J, Heywang G, Jonas F (1994) Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J Electroanal Chem 369(1–2):87–92.  https://doi.org/10.1016/0022-0728(94)87085-3 CrossRefGoogle Scholar
  21. 21.
    Williams DBG, Lawton M (2010) Drying of organic solvents: quantitative evaluation of the efficiency of several desiccants. J Org Chem 75(24):8351–8354.  https://doi.org/10.1021/jo101589h CrossRefGoogle Scholar
  22. 22.
    Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, LondonGoogle Scholar
  23. 23.
    Szkurlat A, Palys B, Mieczkowski J, Skompska M (2003) Electrosynthesis and spectroelectrochemical characterization of poly(3,4-dimethoxy-thiophene), poly(3,4-dipropyloxythiophene) and poly(3,4-dioctyloxythiophene) films. Electrochim Acta 48(24):3665–3676.  https://doi.org/10.1016/S0013-4686(03)00504-8 CrossRefGoogle Scholar
  24. 24.
    Domagala W, Palutkiewicz D, Cortizo-Lacalle D, Kanibolotsky AL, Skabara PJ (2011) Redox doping behaviour of poly(3,4-ethylenedithiothiophene) - the counterion effect. Opt Mater (Amst) 33(9):1405–1409.  https://doi.org/10.1016/j.optmat.2011.02.030 CrossRefGoogle Scholar
  25. 25.
    Fall M, Assogba L, Aaron JJ, Dieng MM (2001) Revisiting the electropolymerization of 3,4-dimethoxythiophene in organic and micellar media. Synth Met 123(3):365–372.  https://doi.org/10.1016/S0379-6779(01)00344-7 CrossRefGoogle Scholar
  26. 26.
    De Abreu Alves MR, Reis RNC, De Oliveira JG, Calado HDR, Donnici CL, Matencio T (2013) Simultaneous quartz microbalance and mirage effect studies of poly(3-methoxythiophene) electrosynthesis and electrochemical characterisations. Electrochim Acta 105:347–352.  https://doi.org/10.1016/j.electacta.2013.04.173 CrossRefGoogle Scholar
  27. 27.
    Alves MRA, Calado HDR, Donnici CL, Matencio T (2010) Electrochemical polymerization and characterization of new copolymers of 3-substituted thiophenes. Synth Met 160(1–2):22–27.  https://doi.org/10.1016/j.synthmet.2009.09.024 CrossRefGoogle Scholar
  28. 28.
    Rodrigues ADG, Galzerani JC (2012) Espectroscopias de infravermelho, Raman e de fotoluminescência : potencialidades e complementaridades. Rev Bras Ensino Física 34(4):4309–4309Google Scholar
  29. 29.
    Song YJ, Lee JU, Jo WH (2010) Multi-walled carbon nanotubes covalently attached with poly(3-hexylthiophene) for enhancement of field-effect mobility of poly(3-hexylthiophene)/multi-walled carbon nanotube composites. Carbon N Y 48(2):389–395.  https://doi.org/10.1016/j.carbon.2009.09.041 CrossRefGoogle Scholar
  30. 30.
    Dong B, Xu J, Zheng L, Hou J (2009) Electrodeposition of conductive poly(3-methoxythiophene) in ionic liquid microemulsions. J Electroanal Chem 628(1–2):60–66.  https://doi.org/10.1016/j.jelechem.2009.01.011 CrossRefGoogle Scholar
  31. 31.
    Armstrong NR, Carter C, Donley C, Simmonds A, Lee P, Brumbach M, Kippelen B, Domercq B, Yoo S (2003) Interface modification of ITO thin films: organic photovoltaic cells. Thin Solid Films 445(2):342–352.  https://doi.org/10.1016/j.tsf.2003.08.067 CrossRefGoogle Scholar
  32. 32.
    Lee H, Lee J, Park S-M (2010) Electrochemistry of conductive polymers 45. Nanoscale conductivity changes of PEDOT : PSS films studied by current-sensing atomic force microscope ( CS-AFM ). J Phys Chem B 114(8):2660–2666.  https://doi.org/10.1021/jp9113859 CrossRefGoogle Scholar
  33. 33.
    Han Z, Zhang J, Yang X, Cao W (2011) Synthesis and application in solar cell of poly(3-octylthiophene)/cadmium sulfide nanocomposite. Sol Energy Mater Sol Cells 95(2):483–490.  https://doi.org/10.1016/j.solmat.2010.09.006 CrossRefGoogle Scholar
  34. 34.
    Singh RK, Kumar J, Kumar A, Kumar V, Kant R, Singh R (2010) Poly(3-hexylthiophene): functionalized single-walled carbon nanotubes: (6,6)-phenyl-C61-butyric acid methyl ester composites for photovoltaic cell at ambient condition. Sol Energy Mater Sol Cells 94(12):2386–2394.  https://doi.org/10.1016/j.solmat.2010.08.023 CrossRefGoogle Scholar
  35. 35.
    Chen X, Inganäs O (1996) Three-step redox in Polythiophenes: evidence from electrochemistry at an Ultramicroelectrode. J Phys Chem 100(37):15202–15206.  https://doi.org/10.1021/jp9601779 CrossRefGoogle Scholar
  36. 36.
    Brédas JL, Scott, Yakushi K, Street GB (1984) Polarons and bipolarons in polypyrrole: evolution of the band structure and optical spectrum upon doping 30(2):1023–5Google Scholar
  37. 37.
    Sacan L, Cirpan A, Camurlu P, Toppare L (2006) Conducting polymers of succinic acid bis-(2-thiophen-3-yl-ethyl)ester and their electrochromic properties. Synth Met 156(2–4):190–195.  https://doi.org/10.1016/j.synthmet.2005.11.010 CrossRefGoogle Scholar
  38. 38.
    Damlin P, Kvarnström C, Ivaska A (2004) Electrochemical synthesis and in situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) in room temperature ionic liquids. J Electroanal Chem 570(1):113–122.  https://doi.org/10.1016/j.jelechem.2004.03.023 CrossRefGoogle Scholar
  39. 39.
    Krishnamoorthy K, Kanungo M, Contractor AQ, Kumar A (2001) Electrochromic polymer based on a rigid cyanobiphenyl substituted 3,4-ethylenedioxythiophene. Synth Met 124(2–3):471–475.  https://doi.org/10.1016/S0379-6779(01)00396-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de QuímicaICEx - Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations